
Docs / SQL / Relational databases / Security

Row-Level Security

In this article

THIS TOPIC APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse

Parallel Data Warehouse

 03/29/2017 •  15 minutes to read • Contributors

Description

Use Cases

Permissions

Best Practices

Security Note: Side-Channel Attacks

Cross-Feature Compatibility

Examples

See Also

Row-Level Security enables customers to control access to rows in a database table based on the

characteristics of the user executing a query (e.g., group membership or execution context).

Row-Level Security (RLS) simplifies the design and coding of security in your application. RLS enables you

to implement restrictions on data row access. For example ensuring that workers can access only those

data rows that are pertinent to their department, or restricting a customer's data access to only the data

relevant to their company.

The access restriction logic is located in the database tier rather than away from the data in another

application tier. The database system applies the access restrictions every time that data access is

1

 Feedback  Edit  Share | Theme Light

Row-Level Security

 

FEEDBACK

https://docs.microsoft.com/en-us/
https://docs.microsoft.com/en-us/sql/index
https://docs.microsoft.com/en-us/sql/relational-databases/database-features
https://docs.microsoft.com/en-us/sql/relational-databases/security/security-center-for-sql-server-database-engine-and-azure-sql-database
https://github.com/edmacauley
https://github.com/rabryst
https://github.com/BYHAM
https://github.com/craigg-msft
https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/security/row-level-security.md
https://www.microsoft.com/

Description

attempted from any tier. This makes your security system more reliable and robust by reducing the

surface area of your security system.

Implement RLS by using the CREATE SECURITY POLICY Transact-SQL statement, and predicates created

as inline table valued functions.

Applies to: SQL Server (SQL Server 2016 through current version), SQL Database (Get it).

RLS supports two types of security predicates.

Filter predicates silently filter the rows available to read operations (SELECT, UPDATE, and

DELETE).

Block predicates explicitly block write operations (AFTER INSERT, AFTER UPDATE, BEFORE

UPDATE, BEFORE DELETE) that violate the predicate.

Access to row-level data in a table is restricted by a security predicate defined as an inline table-

valued function. The function is then invoked and enforced by a security policy. For filter

predicates, there is no indication to the application that rows have been filtered from the result

set; if all rows are filtered, then a null set will be returned. For block predicates, any operations

that violate the predicate will fail with an error.

Filter predicates are applied while reading data from the base table, and it affects all get

operations: SELECT, DELETE (i.e. user cannot delete rows that are filtered), and UPDATE (i.e.

user cannot update rows that are filtered, although it is possible to update rows in such way that

they will be subsequently filtered). Block predicates affect all write operations.

AFTER INSERT and AFTER UPDATE predicates can prevent users from updating rows to values

that violate the predicate.

BEFORE UPDATE predicates can prevent users from updating rows that currently violate the

predicate.

BEFORE DELETE predicates can block delete operations.

Both filter and block predicates and security policies have the following behavior:

You may define a predicate function that joins with another table and/or invokes a function. If

the security policy is created with SCHEMABINDING = ON , then the join or function is accessible

from the query and works as expected without any additional permission checks. If the security

policy is created with SCHEMABINDING = OFF , then users will need SELECT or EXECUTE

permissions on these additional tables and functions in order to query the target table.

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-security-policy-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/create-user-defined-functions-database-engine
http://go.microsoft.com/fwlink/p/?LinkId=299658
http://azure.micosoft.com/documentation/articles/sql-database-preview-whats-new/?WT.mc_id=TSQL_GetItTag

Use Cases

You may issue a query against a table that has a security predicate defined but disabled. Any

rows that would have been filtered or blocked are not affected.

If the dbo user, a member of the db_owner role, or the table owner queries against a table that

has a security policy defined and enabled, the rows are filtered or blocked as defined by the

security policy.

Attempts to alter the schema of a table bound by a schema bound security policy will result in

an error. However, columns not referenced by the predicate can be altered.

Attempts to add a predicate on a table that already has one defined for the specified operation

(regardless of whether it is enabled or disabled) results in an error.

For schema bound security policies, attempts to modify a function used as a predicate on a table

within a security policy results in an error.

Defining multiple active security policies that contain non-overlapping predicates, succeeds.

Filter predicates have the following behavior:

Define a security policy that filters the rows of a table. The application is unaware that any rows

have been filtered for SELECT, UPDATE, and DELETE operations, including situations where all

the rows have been filtered out. The application can INSERT any rows, regardless of whether or

not they will be filtered during any other operation.

Block predicates have the following behavior:

Block predicates for UPDATE are split into separate operations for BEFORE and AFTER.

Consequently, you cannot, for example, block users from updating a row to have a value higher

than the current one. If this kind of logic is required, you must use triggers with the DELETED

and INSERTED intermediate tables to reference the old and new values together.

The optimizer will not check an AFTER UPDATE block predicate if none of the columns used by

the predicate function were changed. For example: Alice should not be able to change a salary

to be greater than 100,000, but she should be able to change the address of an employee

whose salary is already greater than 100,000 (and thus already violates the predicate).

No changes have been made to the bulk APIs, including BULK INSERT. This means that block

predicates AFTER INSERT will apply to bulk insert operations just as they would regular insert

operations.

Here are design examples of how RLS can be used:

Permissions

A hospital can create a security policy that allows nurses to view data rows for their own patients

only.

A bank can create a policy to restrict access to rows of financial data based on the employee's

business division, or based on the employee's role within the company.

A multi-tenant application can create a policy to enforce a logical separation of each tenant's

data rows from every other tenant's rows. Efficiencies are achieved by the storage of data for

many tenants in a single table. Of course, each tenant can see only its data rows.

RLS filter predicates are functionally equivalent to appending a WHERE clause. The predicate

can be as sophisticated as business practices dictate, or the clause can be as simple as

WHERE TenantId = 42 .

In more formal terms, RLS introduces predicate based access control. It features a flexible,

centralized, predicate-based evaluation that can take into consideration metadata or any other

criteria the administrator determines as appropriate. The predicate is used as a criterion to

determine whether or not the user has the appropriate access to the data based on user

attributes. Label-based access control can be implemented by using predicate-based access

control.

Creating, altering, or dropping security policies requires the ALTER ANY SECURITY POLICY permission.

Creating or dropping a security policy requires ALTER permission on the schema.

Additionally the following permissions are required for each predicate that is added:

SELECT and REFERENCES permissions on the function being used as a predicate.

REFERENCES permission on the target table being bound to the policy.

REFERENCES permission on every column from the target table used as arguments.

Security policies apply to all users, including dbo users in the database. Dbo users can alter or

drop security policies however their changes to security policies can be audited. If high

privileged users (such as sysadmin or db_owner) need to see all rows to troubleshoot or validate

data, the security policy must be written to allow that.

If a security policy is created with SCHEMABINDING = OFF , then to query the target table, users

must have the SELECT or EXECUTE permission on the predicate function and any additional

tables, views, or functions used within the predicate function. If a security policy is created with

SCHEMABINDING = ON (the default), then these permission checks are bypassed when users

query the target table.

Best Practices

Security Note: Side-Channel Attacks

It is highly recommended to create a separate schema for the RLS objects (predicate function

and security policy).

The ALTER ANY SECURITY POLICY permission is intended for highly-privileged users (such as a

security policy manager). The security policy manager does not require SELECT permission on

the tables they protect.

Avoid type conversions in predicate functions to avoid potential runtime errors.

Avoid recursion in predicate functions wherever possible to avoid performance degradation. The

query optimizer will try to detect direct recursions, but is not guaranteed to find indirect

recursions (i.e., where a second function calls the predicate function).

Avoid using excessive table joins in predicate functions to maximize performance.

Avoid predicate logic that depends on session-specific SET options: While unlikely to be used in

practical applications, predicate functions whose logic depends on certain session-specific SET

options can leak information if users are able to execute arbitrary queries. For example, a

predicate function that implicitly converts a string to datetime could filter different rows based

on the SET DATEFORMAT option for the current session. In general, predicate functions should

abide by the following rules:

Predicate functions should not implicitly convert character strings to date, smalldatetime,

datetime, datetime2, or datetimeoffset, or vice versa, because these conversions are affected

by the SET DATEFORMAT (Transact-SQL) and SET LANGUAGE (Transact-SQL) options. Instead,

use the CONVERT function and explicitly specify the style parameter.

Predicate functions should not rely on the value of the first day of the week, because this value

is affected by the SET DATEFIRST (Transact-SQL) option.

Predicate functions should not rely on arithmetic or aggregation expressions returning NULL in

case of error (such as overflow or divide-by-zero), because this behavior is affected by the SET

ANSI_WARNINGS (Transact-SQL), SET NUMERIC_ROUNDABORT (Transact-SQL), and SET

ARITHABORT (Transact-SQL) options.

Predicate functions should not compare concatenated strings with NULL, because this behavior

is affected by the SET CONCAT_NULL_YIELDS_NULL (Transact-SQL) option.

Malicious security policy manager: It is important to observe that a malicious security policy manager,

with sufficient permissions to create a security policy on top of a sensitive column and having permission

to create or alter inline table valued functions, can collude with another user that has select permissions

https://docs.microsoft.com/en-us/sql/t-sql/statements/set-statements-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-dateformat-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-language-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-datefirst-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-ansi-warnings-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-numeric-roundabort-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-arithabort-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/set-concat-null-yields-null-transact-sql

Cross-Feature Compatibility

on a table to perform data exfiltration by maliciously creating inline table valued functions designed to

use side channel attacks to infer data. Such attacks would require collusion (or excessive permissions

granted to a malicious user) and would likely require several iterations of modifying the policy (requiring

permission to remove the predicate in order to break the schema binding), modifying the inline table

valued functions, and repeatedly running select statements on the target table. It is strongly

recommended to limit permissions as it is necessary and to monitor for any suspicious activity such as

constantly changing policies and inline table valued functions related to row-level security.

Carefully crafted queries: It is possible to cause information leakage through the use of carefully crafted

queries. For example, SELECT 1/(SALARY-100000) FROM PAYROLL WHERE NAME='John Doe' would let a

malicious user know that John Doe's salary is $100,000. Even though there is a security predicate in place

to prevent a malicious user from directly querying other people's salary, the user can determine when the

query returns a divide-by-zero exception.

In general, row-level security will work as expected across features. However, there are a few exceptions.

This section documents several notes and caveats for using row-level security with certain other features

of SQL Server.

DBCC SHOW_STATISTICS reports statistics on unfiltered data, and thus can leak information

otherwise protected by a security policy. For this reason, in order to view a statistics object for a

table with a row-level security policy, the user must own the table or the user must be a member

of the sysadmin fixed server role, the db_owner fixed database role, or the db_ddladmin fixed

database role.

Filestream RLS is incompatible with Filestream.

Polybase RLS is incompatible with Polybase.

Memory-Optimized TablesThe inline table-valued function used as a security predicate on a

memory-optimized table must be defined using the WITH NATIVE_COMPILATION option. With

this option, language features not supported by memory-optimized tables will be banned and

the appropriate error will be issued at creation time. For more information, see the Row-Level

Security in Memory Optimized Tables section in Introduction to Memory-Optimized Tables.

Indexed views In general, security policies can be created on top of views, and views can be

created on top of tables that are bound by security policies. However, indexed views cannot be

created on top of tables that have a security policy, because row lookups via the index would

bypass the policy.

Change Data Capture Change Data Capture can leak entire rows that should be filtered to

members of db_owner or users who are members of the "gating" role specified when CDC is

enabled for a table (note: you can explicitly set this to NULL to enable all users to access the

https://docs.microsoft.com/en-us/sql/relational-databases/in-memory-oltp/introduction-to-memory-optimized-tables

Examples

A. Scenario for users who authenticate to the database

SQL Copy

CREATE USER Manager WITHOUT LOGIN;
CREATE USER Sales1 WITHOUT LOGIN;
CREATE USER Sales2 WITHOUT LOGIN;

change data). In effect, db_owner and members of this gating role can see all data changes on a

table, even if there is a security policy on the table.

Change Tracking Change Tracking can leak the primary key of rows that should be filtered to

users with both SELECT and VIEW CHANGE TRACKING permissions. Actual data values are not

leaked; only the fact that column A was updated/inserted/deleted for the row with B primary

key. This is problematic if the primary key contains a confidential element, such as a Social

Security Number. However, in practice, this CHANGETABLE is almost always joined with the

original table in order to get the latest data.

Full-Text Search A performance hit is expected for queries using the following Full-Text Search

and Semantic Search functions, because of an extra join introduced to apply row-level security

and avoid leaking the primary keys of rows that should be filtered: CONTAINSTABLE,

FREETEXTTABLE, semantickeyphrasetable, semanticsimilaritydetailstable,

semanticsimilaritytable.

Columnstore Indexes RLS is compatible with both clustered and non-clustered columnstore

indexes. However, because row-level security applies a function, it is possible that the optimizer

may modify the query plan such that it does not use batch mode.

Partitioned Views Block predicates cannot be defined on partitioned views, and partitioned

views cannot be created on top of tables that use block predicates. Filter predicates are

compatible with partitioned views.

Temporal tables are compatible with RLS. However, security predicates on the current table are

not automatically replicated to the history table. To apply a security policy to both the current

and the history tables, you must individually add a security predicate on each table.

This short example creates three users, creates and populates a table with 6 rows, then creates an inline

table valued function and a security policy for the table. The example shows how select statements are

filtered for the various users.

Create three user accounts that will demonstrate different access capabilities.

Copy

CREATE TABLE Sales
 (
 OrderID int,
 SalesRep sysname,
 Product varchar(10),
 Qty int
);

Copy

INSERT Sales VALUES
(1, 'Sales1', 'Valve', 5),
(2, 'Sales1', 'Wheel', 2),
(3, 'Sales1', 'Valve', 4),
(4, 'Sales2', 'Bracket', 2),
(5, 'Sales2', 'Wheel', 5),
(6, 'Sales2', 'Seat', 5);
-- View the 6 rows in the table
SELECT * FROM Sales;

Copy

GRANT SELECT ON Sales TO Manager;
GRANT SELECT ON Sales TO Sales1;
GRANT SELECT ON Sales TO Sales2;

Copy

CREATE SCHEMA Security;
GO

CREATE FUNCTION Security.fn_securitypredicate(@SalesRep AS sysname)
 RETURNS TABLE
WITH SCHEMABINDING
AS
 RETURN SELECT 1 AS fn_securitypredicate_result
WHERE @SalesRep = USER_NAME() OR USER_NAME() = 'Manager';

Create a simple table to hold data.

Populate the table with 6 rows of data, showing 3 orders for each sales representative.

Grant read access on the table to each of the users.

Create a new schema, and an inline table valued function. The function returns 1 when a row in the

SalesRep column is the same as the user executing the query (@SalesRep = USER_NAME()) or if the user

executing the query is the Manager user (USER_NAME() = 'Manager').

Copy

CREATE SECURITY POLICY SalesFilter
ADD FILTER PREDICATE Security.fn_securitypredicate(SalesRep)
ON dbo.Sales
WITH (STATE = ON);

Copy

EXECUTE AS USER = 'Sales1';
SELECT * FROM Sales;
REVERT;

EXECUTE AS USER = 'Sales2';
SELECT * FROM Sales;
REVERT;

EXECUTE AS USER = 'Manager';
SELECT * FROM Sales;
REVERT;

Copy

ALTER SECURITY POLICY SalesFilter
WITH (STATE = OFF);

B. Scenario for users who connect to the database through a middle-tier application

Create a security policy adding the function as a filter predicate. The state must be set to ON to enable

the policy.

Now test the filtering predicate, by selected from the Sales table as each user.

The Manager should see all 6 rows. The Sales1 and Sales2 users should only see their own sales.

Alter the security policy to disable the policy.

Now the Sales1 and Sales2 users can see all 6 rows.

This example shows how a middle-tier application can implement connection filtering, where application

users (or tenants) share the same SQL Server user (the application). The application sets the current

application user ID in SESSION_CONTEXT (Transact-SQL) after connecting to the database, and then

security policies transparently filter rows that shouldn't be visible to this ID, and also block the user from

inserting rows for the wrong user ID. No other app changes are necessary .

Create a simple table to hold data.

https://docs.microsoft.com/en-us/sql/t-sql/functions/session-context-transact-sql

Copy

CREATE TABLE Sales (
 OrderId int,
 AppUserId int,
 Product varchar(10),
 Qty int
);

Copy

INSERT Sales VALUES
 (1, 1, 'Valve', 5),
 (2, 1, 'Wheel', 2),
 (3, 1, 'Valve', 4),
 (4, 2, 'Bracket', 2),
 (5, 2, 'Wheel', 5),
 (6, 2, 'Seat', 5);

Copy

-- Without login only for demo
CREATE USER AppUser WITHOUT LOGIN;
GRANT SELECT, INSERT, UPDATE, DELETE ON Sales TO AppUser;

-- Never allow updates on this column
DENY UPDATE ON Sales(AppUserId) TO AppUser;

Copy

CREATE SCHEMA Security;
GO

CREATE FUNCTION Security.fn_securitypredicate(@AppUserId int)
 RETURNS TABLE
 WITH SCHEMABINDING
AS
 RETURN SELECT 1 AS fn_securitypredicate_result
 WHERE
 DATABASE_PRINCIPAL_ID() = DATABASE_PRINCIPAL_ID('AppUser')
 AND CAST(SESSION_CONTEXT(N'UserId') AS int) = @AppUserId;
GO

Populate the table with 6 rows of data, showing 3 orders for each application user.

Create a low-privileged user that the application will use to connect.

Create a new schema and predicate function, which will use the application user ID stored in

SESSION_CONTEXT to filter rows.

Copy

CREATE SECURITY POLICY Security.SalesFilter
 ADD FILTER PREDICATE Security.fn_securitypredicate(AppUserId)
 ON dbo.Sales,
 ADD BLOCK PREDICATE Security.fn_securitypredicate(AppUserId)
 ON dbo.Sales AFTER INSERT
 WITH (STATE = ON);

Copy

See Also

EXECUTE AS USER = 'AppUser';
EXEC sp_set_session_context @key=N'UserId', @value=1;
SELECT * FROM Sales;
GO

-- Note: @read_only prevents the value from changing again
-- until the connection is closed (returned to the connection pool)
EXEC sp_set_session_context @key=N'UserId', @value=2, @read_only=1;

SELECT * FROM Sales;
GO

INSERT INTO Sales VALUES (7, 1, 'Seat', 12); -- error: blocked from inserting row for the
GO

REVERT;
GO

Create a security policy that adds this function as a filter predicate and a block predicate on Sales . The

block predicate only needs AFTER INSERT, because BEFORE UPDATE and BEFORE DELETE are already

filtered, and AFTER UPDATE is unnecessary because the AppUserId column cannot be updated to

other values, due to the column permission set earlier.

Now we can simulate the connection filtering by selecting from the Sales table after setting different

user IDs in SESSION_CONTEXT. In practice, the application is responsible for setting the current user ID

in SESSION_CONTEXT after opening a connection.

CREATE SECURITY POLICY (Transact-SQL)

ALTER SECURITY POLICY (Transact-SQL)

DROP SECURITY POLICY (Transact-SQL)

CREATE FUNCTION (Transact-SQL)

SESSION_CONTEXT (Transact-SQL)

sp_set_session_context (Transact-SQL)

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-security-policy-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-security-policy-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/drop-security-policy-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-function-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/functions/session-context-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-set-session-context-transact-sql

sys.security_policies (Transact-SQL)

sys.security_predicates (Transact-SQL)

Create User-defined Functions (Database Engine)

 Note

The feedback system for this content will be changing soon. Old comments will not be carried over.

If content within a comment thread is important to you, please save a copy. For more information on

the upcoming change, we invite you to read our blog post.

Conrad_Seelye Dec 12, 2017

Sign in 9 people listening

The two examples cause the default dbo user to lose Select permission on the example table. Try running
"SELECT * FROM Sales;" outside of the EXECUTE AS sections when the RLS is enabled.

What is the recommended method to preserve universal Select permission for the dbo user? Is there a more
secure method than my two edited function statements below?

To get around the loss of Select permission for dbo, we can modify the functions:

Example A:

CREATE FUNCTION Security.fn_securitypredicate(@SalesRep AS sysname)

 RETURNS TABLE

WITH SCHEMABINDING

AS

 RETURN SELECT 1 AS fn_securitypredicate_result

WHERE @SalesRep = USER_NAME() OR USER_NAME() = 'Manager' OR USER_NAME() = 'dbo';

Example B:

3 Comments

+ Follow Post comment as...

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-security-policies-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-security-predicates-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/create-user-defined-functions-database-engine
https://docs.microsoft.com/teamblog/a-new-feedback-system-is-coming-to-docs
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security

Andrew_Brown Aug 15, 2017

ALTER FUNCTION Security.fn_securitypredicate(@AppUserId int)

 RETURNS TABLE

 WITH SCHEMABINDING

AS

 RETURN SELECT 1 AS fn_securitypredicate_result

 WHERE

 (DATABASE_PRINCIPAL_ID() = DATABASE_PRINCIPAL_ID('AppUser')

 AND CAST(SESSION_CONTEXT(N'UserId') AS int) = @AppUserId)

OR USER_NAME() = 'dbo';

GO

Like Reply

What is this doing that a USER_NAME comparison doesn't?

DATABASE_PRINCIPAL_ID() = DATABASE_PRINCIPAL_ID('AppUser') AND
CAST(SESSION_CONTEXT(N'UserId') AS int) = @AppUserId;

Like Reply

Lars_Tellemann_Sæther Dec 12, 2017

@Andrew_Brown It enables a single server login to be used by middleware/application, storing UserId
to be used by RLS in session_context. Examples
here: https://blogs.msdn.microsoft.com/mvpawardprogram/2016/02/09/row-level-security-in-
entityframework-6-ef6/ and here: https://rlssamples.codeplex.com/SourceControl/latest#RLS-
Projects-MidTier-Demo.sql

Like Reply

English (United States)

Previous Version Docs • Blog • How to contribute • Privacy & Cookies • Terms of Use • Feedback • Trademarks

https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security
https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security
https://blogs.msdn.microsoft.com/mvpawardprogram/2016/02/09/row-level-security-in-entityframework-6-ef6/
https://rlssamples.codeplex.com/SourceControl/latest#RLS-Projects-MidTier-Demo.sql
https://docs.microsoft.com/en-us/locale?target=%2Fen-us%2Fsql%2Frelational-databases%2Fsecurity%2Frow-level-security
https://docs.microsoft.com/previous-versions/
https://docs.microsoft.com/teamblog
https://docs.microsoft.com/contribute
https://privacy.microsoft.com/en-us/
https://docs.microsoft.com/en-us/legal/termsofuse
https://aka.ms/sitefeedback
https://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx

