
Thank this author by sharing: 0

 

2009/07/14

FORUM

2016/09/06

ARTICLE

2007/11/15

FORUM

2018/02/22
FORUM

2009/05/21
FORUM

 Log in  ::  Register  ::  Not logged in Search   Go  

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Keep up to date -
daily newsletter:

your@email.com

Sign up

 
 

 

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com  Sign up

 
 
 
   Rate this    Join the discussion   Add to briefcase

Stairway to Columnstore
Indexes Level 10:
Optimizing Queries For
Batch Mode (Part 1)
By Hugo Kornelis, 2016/11/23

The Series
This article is part of the Stairway Series: Stairway to
Columnstore Indexes

SQL Server 2012 and later offer a very different type of index
from the traditional b-tree, the in-memory columnstore index.
These indexes use a column-based storage model, as well as a
new 'batch mode' of query execution and can offer huge
performance increases for certain workloads. But how are they
built, how do they work, and why do they manage to have such a
dramatic impact on performance? In this stairway, Hugo Kornelis
explains all, with his usual mix of concise description and detailed
demonstration.

In Level 9 of this Stairway, I covered batch mode. I explained why
batch mode grants an additional speed boost in addition to the
already considerable performance improvements achieved by
reading from a columnstore index. I also showed a "combined
mode" execution plan, where batch mode is used for some
operators, and row mode for the rest.

The example I used displayed "good" combined mode. This
means that all operators that process large amounts (millions) of
rows run in batch mode, and only operators that work on far less
data (usually after aggregation) use row mode.

In the next two levels, I will look at batch mode limitations. You
will see queries that use only row mode, or that use "bad"
combined mode (using row mode operators on huge volumes of
data). In each case, I will point out the root cause of the batch
mode failure, but I will also show how a rewrite of the query can
help SQL Server find a "good" combined mode plan instead.

The sample database

All sample code in this level uses Microsoft's
ContosoRetailDW sample database and builds upon the
code samples from the previous levels. If you didn't follow
this stairway from the start, or if you did other tests in that
database and are now concerned that this might impact the
code in this level, you can easily rebuild the sample
database. First, download the Contoso BI Demo Database
from https://www.microsoft.com/en-

 
Related Articles

Problem while executing Query
batch

Problem while executing Query batch
using c# code

Stairway to Columnstore
Indexes Level 9: Batch Mode
Execution

In this level, Hugo explains what batch
mode execution is, how it differs from row
mode execution, a...

Executing batches
asychronously?

discuss support for asynchronous batch
execution in sql server 2000

Aggregation

Confused about aggregation

How to execute sql files in batch

How to execute sql files in batch

Tags
batch mode    
columnstore index    
optimization    
stairway series    

 

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.  

Stay up to date: 
 
Daily newsletters with brand new
articles, scripts, editorials and a
Question of the Day help you keep
on top of SQL Server.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=362446&zid=15220&t=1522616960&auth=ad895be6c669baa81e2a4b59c2a75a12
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f148676%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522616962&auth=f63428137d779c68cd8dafb5844d5321
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1837245.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/Hugo_Kornelis/264757/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/articles/Stairway+Series/145064
https://www.microsoft.com/en-us/download/details.aspx?id=18279,
http://www.sqlservercentral.com/Forums/FindPost752570.aspx
http://www.sqlservercentral.com/articles/145064/
http://www.sqlservercentral.com/Forums/FindPost422114.aspx
http://www.sqlservercentral.com/Forums/FindPost852375.aspx
http://www.sqlservercentral.com/Forums/FindPost721181.aspx
http://www.sqlservercentral.com/articles/Batch+Mode/
http://www.sqlservercentral.com/articles/ColumnStore+Index/
http://www.sqlservercentral.com/articles/Optimization/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com


us/download/details.aspx?id=18279, choosing the
ContosoBIdemoBAK.exe option that contains a backup file.
After that, download the scripts attached to this article and
execute the one appropriate for your system (either SQL
Server 2012 or SQL Server 2014. If you are running SQL
Server 2016, I suggest using the 2014 version of this script;
keep in mind however that there have been significant
changes in this latest version so many of the demo scripts in
this stairway series will not work the same on SQL Server
2016. We will cover the changes in SQL Server 2016 in a
later level). Do not forget to change the RESTORE
DATABASE statement at the start: set the correct location of
the downloaded backup file, and set the location of the
database files to locations that are appropriate for your
system.

Once the script has finished, you will have a
ContosoRetailDW database in exactly the same state as
when you had executed all scripts from all previous levels.
(Except for small variations in the index creation process that
are impossible to avoid).

Also note that the examples in this level are all intended to
demonstrate issues specific to SQL Server 2012. All code
will run without error on later versions, but you will not see
the same problems and you will not benefit from using the
suggested workarounds.

Batch mode limitations
In SQL Server 2012, only a small number of execution plan
operators support batch mode; a few more were added in SQL
Server 2014 but there are still omissions. As soon as any other
operator is needed, execution falls back to row mode. This was a
one-way transition in SQL Server 2012. In SQL Server 2014,
support was added for "mixed mode plans", where execution can
transition between batch mode and row mode multiple times;
however SQL Server tries to minimize these transitions because
of the overhead involved.

In all these cases, queries will still run faster than they would
when using a rowstore index, but they will not give you the full
performance benefit. However, it is often possible to work around
these limitations by rewriting the query. This usually requires
some extra thought and the resulting queries can be harder to
maintain, but they will give you better performance.

Which operators support batch mode?

SQL Server 2012 only supports batch mode in a few
operators. Apart from (obviously) the Columnstore Index
Scan, these are Filter, Compute Scalar, and Hash Match –
and the latter only for the logical operations Aggregate and
Inner Join. In addition, a special new operator, Batch Hash
Table Build, was introduced that is in some cases required to
prepare the data before it can be processed by a Hash
Match operator.

In SQL Server 2014, the Batch Hash Table Build operator is
no longer needed and has been removed. The Hash Match
operator now supports batch mode in all its logical join
variations (outer joins, semi-joins, and anti-semi joins), as
well as in the new "Global Aggregate" logical operation. Also,
support for batch mode has been added to the
Concatenation operator.

https://www.microsoft.com/en-us/download/details.aspx?id=18279,


Now, while the list of batch-enabled operators seems rather
short, these few operators (especially after the SQL Server
2014 improvements) can actually already make a lot of
queries run in batch mode.

For people who live and dream in execution plans, the above lists
of operators will be very useful. But if you spend more time in the
query editor than in the execution plan display, then you will need
to know how these limitations translate to queries. So in the next
two levels, I will focus on query patterns that are known to cause
issues with batch mode (or other limitations related to
columnstore indexes). As mentioned, the patterns demonstrated
in this level all apply to SQL Server 2012 only; if you run the
same code on newer versions you will not see the same
problems. In the next level we will also highlight some patterns
that cause issues on SQL Server 2014 as well. (I will describe the
improvements in SQL Server 2016 in a later level). I will also
show how to work around these limitations.

Outer joins
As already mentioned in level 1, outer joins cause a fallback to
row mode (in SQL Server 2012 only). Depending on the rest of
the query, the result will either use only row mode, or it will use
"bad" combined mode. An example of the latter can be seen by
running the code in listing 10-1:

Listing 10-1: Using an outer join

The relevant part of the execution plan for this query is shown in
figure 10-1. As in the previous level, the shaded area shows
which operators run in batch mode.

Zoom in   |  Open in new window

Figure 10-1: Outer join causes row mode fallback

The scan of the FactOnlineSales table and the inner join to the
DimDate table are executed in batch mode, but then execution

USE ContosoRetailDW; 

go 

 

WITH NonContosoProducts 

AS (SELECT * 

    FROM   dbo.DimProduct 

    WHERE  BrandName                   <> 'C

SELECT     ncp.ProductName, 

           dd.CalendarQuarter, 

           COUNT(fos.SalesOrderNumber) AS Nu

           SUM(fos.SalesQuantity)      AS Qu

FROM       dbo.FactOnlineSales         AS fo

INNER JOIN dbo.DimDate                 AS dd

      ON   dd.Datekey                   = fo

RIGHT JOIN NonContosoProducts          AS nc

      ON   ncp.ProductKey               = fo

GROUP BY   ncp.ProductName, 

           dd.CalendarQuarter 

ORDER BY   ncp.ProductName, 

           dd.CalendarQuarter;

javascript:;
javascript:;


falls back into row mode for the outer join to the non-Contoso
products from the DimProduct table. The three marked operators,
Parallelism (Repartition Streams), Hash Match (Left Outer Join),
and Hash Match (Partial Aggregate), each process a huge
number of rows – over 12 million for the first two, and almost 8
million for the third. The rest of the plan (not shown in the
screenshot) processes fewer than 20,000 rows – also in row
mode, but for such a low number of rows that's not an issue.

The easiest way to speed up this query would be to change the
outer join back to an inner join, to enable batch mode for the
marked operators. But that can change the results of the query,
which is of course not acceptable. However, we can change the
join type if we also make other changes to compensate, as
shown in listing 10-2. The query is more complex, but it runs a lot
faster because we now get a "good" combined mode plan:

Listing 10-2: Rewrite of an outer join to use more batch
mode

The trick used here is to consider the similarities and differences
between the inner and the outer join. Both joins combine sales
data with product data for non-Contoso products; both joins will
exclude sales of products that are not in the
NonContosoProducts list. The only difference is what happens
with non-Contoso products that have no sales. The inner join
removes these products; the outer join includes row for each of
them with NULL values for all columns from the other table. In the

aggregation that follows, each of these extra rows is a separate
product that will become a separate "group" (consisting of that
single row) in the aggregation; the CalendarQuarter column will

USE ContosoRetailDW; 

go 

 

WITH NonContosoProducts 

AS (SELECT     * 

    FROM       dbo.DimProduct 

    WHERE      BrandName                   <

, JoinedAndAggregated 

AS (SELECT     ncp.ProductName, 

               dd.CalendarQuarter, 

               COUNT(fos.SalesOrderNumber) A

               SUM(fos.SalesQuantity)      A

    FROM       dbo.FactOnlineSales         A

    INNER JOIN dbo.DimDate                 A

          ON   dd.Datekey                   

    INNER JOIN NonContosoProducts          A

          ON   ncp.ProductKey               

    GROUP BY   ncp.ProductName, 

               dd.CalendarQuarter) 

SELECT         ncp.ProductName, 

               jaa.CalendarQuarter, 

               COALESCE(jaa.NumOrders, 0)  A

               jaa.QuantitySold            A

FROM           JoinedAndAggregated         A

RIGHT  JOIN    NonContosoProducts          A

       ON      ncp.ProductName              

ORDER BY       ncp.ProductName, 

               jaa.CalendarQuarter;



be NULL; a COUNT aggregation will return 0 for

COUNT(columnname), or 1 for COUNT(*) or

COUNT(constant).

In listing 10-2, I start with an inner join, so I lose these extra rows.
Then, after aggregation, I add another join to the non-Contoso
products, this time an outer join, for the sole purpose of
reintroducing those lost rows. So instead of first adding one extra
row for each unmatched product and then aggregating per
product, I now first aggregate per product and then add an extra
row for unmatched products. The final results are equal (as long
as I take care to do a proper COALESCE for the COUNT results),

but now all the joins and most of the aggregation are done in
batch mode. The execution plan has become more complicated,
but all operators that run in row mode now process a small
number of rows.

The explanation above proves that the two queries are logically
equivalent; they will always, under any circumstances, produce
the same results. That is a key consideration for all the rewrites
presented in this and the next level. A rewrite is only acceptable if
you can prove without any doubt that it will never change the
results. Just testing is not enough; sometimes an erroneous
rewrite will only cause differences in some edge cases that might
not exist in your test data. However, the proof should not replace
testing, it is still possible that you made an oversight in your logic,
or that you introduced a bug by a simple typo in the query.

On my laptop, performance improves from 5.8 seconds for the
original query to 0.7 seconds after the rewrite. After proving that
the rewrite will not change the results and testing that I didn't
make an error, I am happy to give this performance improvement
to my users. Of course with a long comment in the code to
explain to my coworkers why I replaced a simple outer join query
with a more complex query, and the proof that these are in fact
equivalent.

UNION ALL
Another annoying limitation for batch mode execution on SQL
Server 2012 occurs when combining result sets using UNION

ALL. This may not be a common SQL construct in data

warehouse and reporting applications, but it might be used even
without the data analyst being aware of it, especially on a SQL
Server 2012 installation.

A common method to work around the read-only limitation for
columnstore indexes on SQL Server 2012 is to partition the large
fact tables by date. Data that is old enough to be stale is stored in
the fact table (with a columnstore index). More recent data (that is
still changing), is stored in a smaller table with only rowstore
indexes. When a time period closes, a columnstore index is built
on the smaller table after which partition switching can be used to
add this data to the larger table. (See
https://social.technet.microsoft.com/wiki/contents/articles/5069.add-
data-to-a-table-with-a-columnstore-index-using-partition-
switching.aspx for an example of this technique).

The benefit of this technique is that you get the performance
benefit of the columnstore index for most of the data, and still
have read/write possibilities on the much smaller "recent" fraction
of the data. But the down-side is that now the data is spread out
over two tables. In order to facilitate easy querying, many DBAs
will create a view that combines the data from the two tables.

https://social.technet.microsoft.com/wiki/contents/articles/5069.add-data-to-a-table-with-a-columnstore-index-using-partition-switching.aspx


Data analysts can then query that view instead of having to query
both tables and combined the results.

In the Contoso sample database, there is no table that can be
easily used to set up a very realistic example of this technique, so
I have to resort to the rather contrived example shown in listing
10-3:

Listing 10-3: Creating a view to combine columnstore and
rowstore data

The code in listing 10-3 creates an additional table
(FactOnlineSales_RowStore) to mimic the table for recent data,
and a view (FactOnlineSales_Combined) that combines both
tables for easy querying. Let's see how this view performs in a
typical data warehousing query:

USE ContosoRetailDW; 

go 

 

-- Quick and dirty way to create an empty co

SELECT * 

INTO   dbo.FactOnlineSales_RowStore 

FROM   dbo.FactOnlineSales 

WHERE  1 = 0; 

go 

 

-- Add a few rows of sample data 

INSERT INTO     dbo.FactOnlineSales_RowStore

SELECT TOP (10) DateKey, StoreKey, ProductKe

                SalesOrderNumber, SalesOrder

                ReturnQuantity, ReturnAmount

                TotalCost, UnitCost, UnitPri

FROM            dbo.FactOnlineSales 

ORDER BY        OnlineSalesKey; 

 

-- Create the same indexes as the fact table

ALTER TABLE dbo.FactOnlineSales_RowStore 

ADD CONSTRAINT PK_FactOnlineSales_RowStore_S

    PRIMARY KEY NONCLUSTERED (OnlineSalesKey

 

CREATE CLUSTERED INDEX ix_FactOnlineSales_Ro

ON dbo.FactOnlineSales_RowStore (ProductKey)

go 

 

-- Create a view that combines the two table

CREATE VIEW dbo.FactOnlineSales_Combined 

AS 

SELECT  * 

FROM    dbo.FactOnlineSales 

UNION ALL 

SELECT  * 

FROM    dbo.FactOnlineSales_RowStore;

USE ContosoRetailDW; 

go 

 

SELECT     dp.ProductName, 

           dd.CalendarYear, 



Listing 10-4: Data warehousing query on a view that uses
UNION ALL

Because of the view, there is a UNION ALL "hidden" in this

query. But if a DBA created the view, then the data analyst who
writes this query might not be aware of this. They will find out,
though, when they run this query. On my laptop, it takes almost
five seconds to run, much longer than other queries on the same
table. This is because the entire query runs in row mode.

Zoom in   |  Open in new window

Figure 10-2: Row mode is used for a UNION ALL

Figure 10-2 shows a part of the execution plan. This plan
fragment is rather straightforward: the two FactOnlineSales tables
are read and the data is combined using the Concatenation
operator (the execution plan's equivalent of a UNION ALL). This

operator doesn't support batch mode in SQL Server 2012, so the
only part of the plan that could in theory be executed in batch
mode is the Columnstore Index Scan operator. In this case, even
that operator is executed in row mode – probably because the
optimizer expects the overhead of the mode transition to cost
more than the benefit of scanning in batch mode.

In order to work around the batch mode limitation for UNION

ALL, we have to give up the convenience of using the single

view. The same results can be returned much faster on SQL
Server 2012 by using this query:

           SUM(fos.SalesQuantity)       AS Q

           AVG(SalesAmount)             AS A

FROM       dbo.FactOnlineSales_Combined AS f

INNER JOIN dbo.DimDate                  AS d

      ON   dd.Datekey                    = f

INNER JOIN dbo.DimProduct               AS d

      ON   dp.ProductKey                 = f

GROUP BY   dp.ProductName, 

           dd.CalendarYear 

ORDER BY   dp.ProductName, 

           dd.CalendarYear;

USE ContosoRetailDW; 

go 

 

WITH ResultsForColumnsStore 

AS (SELECT     dp.ProductName, 

               dd.CalendarYear, 

               SUM(fos.SalesQuantity)       

               SUM(fos.SalesAmount)         

               COUNT(fos.SalesAmount)       

    FROM       dbo.FactOnlineSales          

    INNER JOIN dbo.DimDate                  

          ON   dd.Datekey                   

    INNER JOIN dbo.DimProduct               

          ON   dp.ProductKey                

    GROUP BY   dp.ProductName, 

               dd.CalendarYear) 

javascript:;
javascript:;

