
Thank this author by sharing: 0

2008/10/24
FORUM

2008/08/20
FORUM

2014/08/28

ARTICLE

2012/12/17
BLOG

2012/08/16

FORUM

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Keep up to date -
daily newsletter:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Insert, Update, and Delete
Indexes: Stairway to SQL
Server Indexes Level 13
By David Durant, 2012/02/29

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

In Levels 10 through 12, we looked at the internal structure of
indexes and the impact of change on that structure. In this level
we continue that theme by examining the impact of INSERT,

DELETE, UPDATE and MERGE statements. First, we look at the

four commands individually, and then we cover a subject that is
applicable to all three: per row data modification versus per index
data modifications.

INSERT
We “jumped the gun” on INSERT statements by introducing the

subject in Level 11 – Index Fragmentation. A summary of what
we said there is repeated here. For a fuller coverage, including
code samples, refer to Level 11.

When a row is inserted into a table, regardless of whether that
table is a heap or a clustered index, an entry must be inserted
into each of the table’s indexes; with the possible exception of
filtered indexes. When doing so, SQL Server uses the index key
value from the row to traverse the index from root page to leaf
level page. When it arrives at the leaf level page, it checks the
page for available space. If there is sufficient empty space on the
page, the new entry is inserted at its proper location.

Eventually SQL Server may attempt to insert an entry into a page
that is already full. When this happens, SQL Server will search its
allocation structures to find an empty page. Once it has found an
empty page, it will do one of three things, each dependent on the
sequence in which new index keys are being inserted:

Random Sequence: Normally, SQL Server will move half
the entries (those of higher key value) from the full page to

Related Articles

index entry

index entry

Insert / Deletes

Insert / Deletes

Clustered Columnstore Index
Gives "Unable to find index
entry" Error

The Clustered columnstore index
generates "unable to find index entry"
error and a memory dump after...

Ghost Cleanup process

I’ve been digging deeper into the Ghost
Cleanup process recently, and quite
naturally my quest lead ...

delete records in sql without
entry in transaction log

delete records in sql without entry in
transaction log

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Stay up to date:

Daily newsletters with brand new
articles, scripts, editorials and a
Question of the Day help you keep
on top of SQL Server.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=355875&zid=15220&t=1522616333&auth=7f55120cec1dd69fa215c43dd52f6da0
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72445%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=328526&zid=15491&t=1522616336&auth=c84d03eeedb3f6f2aadf37eddc868e7e
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1138527.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Forums/FindPost590412.aspx
http://www.sqlservercentral.com/Forums/FindPost555125.aspx
http://www.sqlservercentral.com/articles/113752/
http://www.sqlservercentral.com/blogs/discussionofsqlserver/2012/12/17/ghost-cleanup-process/
http://www.sqlservercentral.com/Forums/FindPost648742.aspx
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

the empty page, and then insert the new entry into the
appropriate page, thus producing two pages that are half
full. If your application continues to insert, but not delete,
rows; these two pages will eventually grow from half full to
full, where upon they will split into pages that are half full.
Over time, every page cycles from half full to full, again
and again; resulting in an average page fullness of
approximately 75%.

Ascending Sequence: If, however, SQL Server notes
that the new entry would be the last entry on the full page,
it will assume that rows are being inserted into the table in
the same sequence as the index key. Therefore, it places
the new row, and only the new row, in the empty page. If
SQL Server was correct in its assumption that rows are
arriving in index key sequence, subsequent rows will
belong in this same page. This new page will fill, causing
another new page to be allocated. Once a page becomes
full, it stays full; resulting in little or no internal
fragmentation.

Descending Sequence: Conversely, if SQL Server notes
that the new entry would be the first entry on the full page,
it will assume that rows are being inserted into the table in
descending sequence. Once again, it places the new row,
and only the new row, in the empty page. The internal
fragmentation is the same as the ascending sequence
scenario; at or near 100%.

Once the new entry is placed into a page, some cleanup must be
done. Four next-page / previous-page pointers, spread over three
pages, must be updated; and an entry pointing to the new page
must be inserted at the next higher level of the index; which, in
turn, might result in page split at that index level.

DELETE
When a row is deleted from a table, the corresponding index
entries must be removed from the table’s indexes. Again, for
each index, SQL Server navigates from the root page to leaf level
page and finds the entry. Once SQL Server has found the entry, it
will do one of two things. It will either remove the entry
immediately, or it will set a bit in the row header, marking the
entry as a ghost record in the index. This technique is referred to
as ghosting the entry. When it becomes appropriate and
convenient to do so, ghost records will be removed; as described
later in this Level.

Ghost records are ignored during all subsequent querying of the
table. Physically, they still exist; but logically they do not. The
number of ghost records in an index can be obtained from the
sys.dm_db_index_physical_stats system function.

It is for performance and concurrency management reasons that
SQL Server marks the entry for subsequent removal rather than
removing it immediately. Not only the performance of the DELETE

itself, but also the performance of a subsequent transaction
rollback, should one be needed, benefits from ghosting the rows.
It is much easier to rollback a DELETE operation by un-marking

the entry, rather than by recreating that entry from transaction log
records.

The decision to ghost the entry, and the length of time that will
elapse before the ghost record is actually removed, is influenced
by a variety of factors; many of which are beyond the scope of
this stairway. This variety of factors makes it difficult to predict

whether a DELETE statement will remove the entries, ghost the

entries, or some combination of both. Which, in turn, makes it
difficult to predict the immediate impact of a DELETE statement

on index fragmentation.

A partial list of the factors that influence the DELETE process

appears below:

If row level locking is in effect, deleted index entries will be
ghosted.

If 5000 row locks have been acquired during the execution
of a statement, locking normally escalates to table level
locking.

The use of row versioning, rather than locking, as the
concurrency mechanism, may cause the ghosting of
deleted records.

Ghost records will never be removed until their transaction
has finished.

SQL Server’s background ghost-cleanup thread removes
ghost records; however, exactly when it will do so is
unpredictable. The DELETE operation itself does not alert

the ghost-cleanup thread to the presence of the ghost
record; rather, it is any subsequent scan of the page that
adds the page to a list of pages containing ghost records;
a list that is periodically processed by the cleanup thread.

The ghost-cleanup thread awakens approximately once
every five seconds. It will clean up to ten pages each time
it executes. These numbers are subject to change in a
future release.

You can force the cleanup of ghost records by executing
either the sp_clean_db_free_space or the
sp_clean_db_file _free_space stored procedure, which will
remove all eligible ghost records from the entire database
or from a specified database file.

In other words, when you delete rows, they are, logically
speaking, gone. If they are not removed immediately, they will be
removed as soon as it is safe and practical for SQL Server to do
so.

A Demonstration of Ghost Record
Behavior
To illustrate ghost records, we load a table that has a
nonclustered index with 20000 rows using the sequential insert
pattern mentioned above, producing a table whose pages are
completely full. Then, within an uncommitted transaction we
delete half the table’s rows and examine the result. Using the
sys.dm_db_index_physical_stats system view, we will see that
some of the deleted rows have been removed, while some have
been ghosted. Lastly, we commit the transaction and reexamine
the table, perhaps several times, waiting until the ghost records
have been removed.

We do two variations of this demonstration; one in which we
delete every other entry in the index, thus deleting half the rows
on all the pages; and one in which we delete the first half of the
entries, thus deleting all the rows on half the pages.

To check for the presence of ghost records, and for
fragmentation, after each DELETE, we use a query similar to one

we used in Level 11 – Index Fragmentation; only this time the

rightmost column will tell us the number of ghost records in the
index. Since we will use this query to access an index that is
being modified by a still open transaction, we must run it on the
same connection that the transaction is using. To simplify, we
create a view named dbo.viewTestIndexInfo, shown in Listing 1,
and select from this view within our test scripts.

Listing 1: The fragmentation report view

Listing 2 shows the code used to create our table and load it, in
index sequence, with 20000 rows. It also is similar to one that we
used in Level 11.

USE AdventureWorks;

GO

IF EXISTS (SELECT *

 FROM sys.objects

 WHERE name = 'viewTestIndexInfo' and t

BEGIN

 DROP VIEW dbo.viewTestIndexInfo

END

GO

CREATE VIEW dbo.viewTestIndexInfo

AS

SELECT IX.name as 'Name'

 , PS.index_level as 'Level'

 , PS.page_count as 'Pages'

 , PS.avg_page_space_used_in_percent as 'P

 , PS.ghost_record_count as 'Ghost Records

 FROM sys.dm_db_index_physical_stats(db_id(

 , default, default

 , 'DETAILED') PS

 JOIN sys.indexes IX

 ON IX.object_id = PS.object_id AND IX.inde

 WHERE IX.name = 'PK_FragTest_PKCol';

GO

USE AdventureWorks;

GO

IF EXISTS (SELECT *

 FROM sys.objects

 WHERE name = 'viewTestIndexInfo' and t

BEGIN

 DROP VIEW dbo.viewTestIndexInfo

END

GO

CREATE VIEW dbo.viewTestIndexInfo

AS

SELECT IX.name as 'Name'

 , PS.index_level as 'Level'

 , PS.page_count as 'Pages'

 , PS.avg_page_space_used_in_percent as 'P

 , PS.ghost_record_count as 'Ghost Records

 FROM sys.dm_db_index_physical_stats(db_id(

 , default, default

 , 'DETAILED') PS

 JOIN sys.indexes IX

 ON IX.object_id = PS.object_id AND IX.inde

Listing 2: Loading a table / index with full pages

Once the table has been loaded, executing SELECT * FROM

dbo.viewTestIndexInfo reveals the size and page fullness of

its nonclustered index, as shown in Figure 1.

Zoom in | Open in new window

Figure 1: The Index with Full Pages

Running the code shown in Listing 3 begins a transaction,
deletes every other row from the table, and then selects from the
view.

BEGIN TRANSACTION

DELETE DBO.FragTest

 WHERE PKCol % 2 = 0;

SELECT *

 FROM dbo.viewTestIndexInfo;

GO

Listing 3: Deleting every other row

The results are shown in Figure 2.

Zoom in | Open in new window

Figure 2: The Index with Ghost Records

When the DELETE statement began execution, row level locking

was in place and deleted index entries where ghosted. After 4972
rows had been deleted, generating 4972 ghost records; so many
row locks existed that locking escalated to table locks. All
subsequent deletes, 10000 – 4972 = 5028 rows, resulted in the
index entry being removed rather than ghosted. This removal of
5028 index entries reduced the average page fullness to ~73%.

Committing the transaction makes the deleted rows eligible for
ghost cleanup. At some point thereafter, running the Listing 1
view reveals the page fragmentation shown in Figure 3. The
number of pages remains the same, but the pages are now half
full; verifying that the ghost records have been removed from the
index.

Zoom in | Open in new window

Figure 3: The index after the transaction has committed

Another Variation

As ghost records are removed from a leaf level page, that page
may become completely empty. When this happens, the page is
released and its corresponding pointer in the lowest non-leaf
level, Level 1, is deleted. We examine this behavior with a
second demonstration.

 WHERE IX.name = 'PK_FragTest_PKCol';

GO

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;

For this variation, we reload the table by re-running the code in
Listing 2. Selecting from the Listing 1 view before deleting any
rows again produces the results shown in Figure 1.

Now we delete the first half of the rows, using the code shown in
Listing 4. Once again, the delete is done inside an open
transaction.

BEGIN TRANSACTION

DELETE DBO.FragTest

 WHERE PKCol <= 20000 / 2;

Listing 4: Deleting the first half of the rows

Selecting from the Listing 1 view after the first half of the rows
have been deleted reveals the picture shown in Figure 4.

Zoom in | Open in new window

Figure 4: The index after the first half of its entries have been
deleted

Again, approximately 5000 index entries where ghosted, the rest
were removed. Since the removed entries were contiguous,
whole pages became empty and were released. The number of
pages went down while the average page fullness remained high.

When we commit the transaction, and select from the Listing 1
view, we obtain the results shown in Figure 5.

Zoom in | Open in new window

Figure 5: The index after the transaction has committed

Those pages at the start of the index, the ones that had all their
entries deleted, have been freed and are no longer part of the
index. One page, that had been the middle page of the index and
contained the deleted row of highest key value, had some of its
rows removed. The other pages had no deleted entries and
maintained their fullness.

Why is there one ghost record remaining? Because the address
of first page of the leaf level, like the address of the root page, is
stored in system metadata. Therefore, once allocated, these two
pages are never deallocated. The ghost-cleanup thread took care
to leave one ghost record on the first page, ensuring that page
would not be deallocated.

Non-leaf level entries are always removed immediately rather
than being ghosted. If deleting the non-leaf entry causes its page
to become empty, then that page is released and its pointer, at
the next higher level, is deleted.

The root page, as was just mentioned, is an exception to this
pattern; it is never deleted. Even if the index is completely empty,
the root page will remain. For every index there must be a top
level page, and that page is the root page.

UPDATE
When a row in a table is updated, index entries may need to be
modified. For each index entry, SQL Server will perform this
modification as either an in-place update, or as a DELETE

followed by an INSERT. SQL Server will use an in-place UPDATE

javascript:;
javascript:;
javascript:;
javascript:;

whenever possible. However, there are some situations in which
an in-place UPDATE cannot be performed, and SQL Server will

have to execute the update as a DELETE-followed-by-INSERT.

Here is a list of the most common reasons:

The update will modify a key column, causing the entry to
be relocated within the index.

The update will modify a variable width column and cause
the entry to no longer fit on the page.

There is a DML trigger defined on the table.

If the column being modified is part of the index’s key, the entry’s
position within the index will change. The entry must be removed
from its old location and inserted into the index its new location
based on index key sequence. In most cases, the update will be
done as a DELETE followed by an INSERT. If the new location

and the old location are on the same page, the update might be
done in-place. SQL Server will walk from the root page to the leaf
level twice; once to find the current version of the entry and once
to determine the correct location for the new version.

If the column being modified is part of a clustered index’s key, all
nonclustered indexes will need to be updated because their
bookmarks are comprised of the clustered index’s key.

If the column being modified is a non-key column of the index,
the entry’s position with the index will remain the same; however
the size of the entry might not remain the same. If there is
insufficient room on the page for the new version of the entry, the
update will be done as a DELETE followed by an INSERT.

MERGE
The MERGE operation was introduced in SQL Server 2008, and

has great power, flexibility, and benefit. Under the covers, MERGE

generates INSERT, UPDATE and DELETE statements. The

impact on your indexes of executing a MERGE statement is the

same as it would be had you written and submitted the INSERT

/ UPDATE / DELETE statements yourself. For this reason,

MERGE requires no special coverage in this Stairway.

Index-at-a-Time Updates
When a data modification statement inserts, deletes, or updates a
single row, SQL Server must make the modification to the row
and then modify each index to reflect the change. But when a
data modification statement inserts, deletes, or updates multiple
rows, SQL Server has two choices:

For each row, it can apply the change to the row and
modify each index.

Or:

For each row, it can apply the change to the row and then;
for each index, add the change information to a list of
pending changes, rather than actually making the change.
Once all the rows have been processed, the pending
changes for each index are sorted into index sequence
and applied to the index.

This second technique is called index-at-a-time updating or wide
updating; and is an option for INSERT, UPDATE and DELETE

operations.

