
Thank this author by sharing: 3

2016/03/11

ARTICLE

2017/05/17

ARTICLE

2016/03/07

BLOG

2013/06/12

BLOG

2013/07/30

BLOG

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Stairway to Columnstore
Indexes Level 13:
Improvements in SQL
Server 2016
By Hugo Kornelis, 2017/06/07

The Series
This article is part of the Stairway Series: Stairway to
Columnstore Indexes

SQL Server 2012 and later offer a very different type of index
from the traditional b-tree, the in-memory columnstore index.
These indexes use a column-based storage model, as well as a
new 'batch mode' of query execution and can offer huge
performance increases for certain workloads. But how are they
built, how do they work, and why do they manage to have such a
dramatic impact on performance? In this stairway, Hugo Kornelis
explains all, with his usual mix of concise description and detailed
demonstration.

This stairway series was started in 2015. As such, the focus was
on SQL Server 2012 and SQL Server 2014 only. When SQL
Server 2016 was released, with lots of improvements in the
columnstore technology, I decided to finish the planned levels
with the original focus on SQL Server 2012 and 2014, and add
one extra level with a brief overview of the improvements
available in SQL Server 2016.

The amount of change is huge: more than enough for a full
stairway series of its own. So in this level I can only touch on the
many changes, to give you a glimpse of what to expect. If you
currently work with columnstore indexes on SQL Server 2016, or
if you are considering or preparing for an upgrade to SQL Server
2016, then I absolutely recommend reading the excellent series
of blog posts that Niko Neugebauer has written, covering
columnstore indexes in far more detail and far more depth than in
this stairway. It is a long series: currently 104 (!!) posts and still
growing, but definitely worth reading. The first 53 posts focus on
columnstore indexes in SQL Server 2014; posts 54 and up are
dedicated to SQL Server 2016.

For the demos in this level, I will once more use Microsoft’s
ContosoRetailDW demo database. You can download the .BAK
file from http://www.microsoft.com/en-us/download/details.aspx?
id=18279. This is a database backup file that you then can
restore to your SQL Server 2016 instance if you want to follow
along.

Related Articles

Stairway to ColumnStore
Indexes Level 7: Optimizing
Nonclustered Columnstore
Indexes

In this level, we will focus on optimization
techniques to apply while building the
nonclustered col...

Stairway to Columnstore
Indexes Level 12: Clustered or
Nonclustered?

The previous levels of this stairway
describe details, features, and limitations
of columnstore inde...

Columnstore Indexes – part 79
(“Loading Data into Non-
Updatable Nonclustered
Columnstore”)

Continuation from the previous 78 parts,
the whole series can be found at
http://www.nikoport.com/co...

xVelocity Columnstore Indexes
in SQL Server 2012

With the release of SQL Server 2012,
Microsoft introduced a new type of
nonclustered index called xV...

SQL Server 2014: Columnstore
Index improvements

In SQL Server 2012, a new feature was
added called Columnstore Indexes that
resulted in huge query p...

Tags
columnstore index
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Stay up to date:

Daily newsletters with brand new
articles, scripts, editorials and a
Question of the Day help you keep
on top of SQL Server.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=328527&zid=15220&t=1522617038&auth=840caddae0a23cdf85df055e5ea31a70
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f157415%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522617038&auth=0bc6fd9a912260c36659cfe2b48eb88c
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1877779.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/Hugo_Kornelis/264757/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/stairway/121631/
http://www.nikoport.com/columnstore/
http://www.microsoft.com/en-us/download/details.aspx?id=18279
http://www.sqlservercentral.com/articles/138566/
http://www.sqlservercentral.com/articles/157377/
http://www.sqlservercentral.com/blogs/nikos-blog/2016/03/07/columnstore-indexes-part-79-loading-data-into-non-updatable-nonclustered-columnstore/
http://www.sqlservercentral.com/blogs/basits-sql-server-tips/2013/06/12/xvelocity-columnstore-indexes-in-sql-server-2012/
http://www.sqlservercentral.com/blogs/jamesserra/2013/07/30/sql-server-2014-columnstore-index-improvements/
http://www.sqlservercentral.com/articles/ColumnStore+Index/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

Compatibility level
To prevent backwards compatibility issues, most of the
improvements are only available when the database compatibility
level is set to 130. Since we want to look at all those new features
in this level, we will start by setting the database compatibility
level:

USE [master];

go

ALTER DATABASE ContosoRetailDW

SET COMPATIBILITY_LEVEL = 130;

Listing 13-1: Increase the compatibility level to activate new
features

Note that not all improvements depend on the compatibility level;
if you do not run the code above then some of the demos in this
level will still work; others will fail.

Nonclustered columnstore index
As discussed in the previous level, both clustered and
nonclustered columnstore indexes have their pros and cons. But
in SQL Server 2014, the nonclustered columnstore index still
made the table read-only, and that limitation often is a
showstopper for the nonclustered version. In SQL Server 2016,
this restriction is now finally lifted. Both the clustered as well as
the nonclustered version of the columnstore index now fully
support updates to the underlying table.

Another improvement in SQL Server 2016 that may be relevant to
some specific workloads is that nonclustered columnstore
indexes can now be created with a filter. The ability to define a
filter for a traditional rowstore index was introduced a long time
ago, in SQL Server 2008; the effect is that only rows matching
the filter are included in the index. This reduces the size of the
index (saving disk space and speeding up index scans), but of
course limits its use to only queries that need only rows included
in the index. Typically, filtered indexes are used for tables that
contain lots of data that is rarely ever needed in queries but
cannot be permanently archived or deleted.

The code below shows these two new features. Assuming that
almost all queries are for data in 2008 or newer, and since that
subset of the data is large enough to warrant using a columnstore
index, we create a nonclustered columnstore that includes data
from 2008 only. We then update some rows in this set, to
demonstrate that the nonclustered columnstore index no longer
makes the data read only.

USE ContosoRetailDW;

go

CREATE NONCLUSTERED COLUMNSTORE INDEX NCI_Fa

ON dbo.FactOnlineSales (OnlineSalesKey,

 DateKey,

 StoreKey,

 ProductKey,

 PromotionKey,

 CurrencyKey,

http://www.sqlservercentral.com/articles/Stairway+Series/157377/

Listing 13-2: Nonclustered columnstore index is now
updatable and can be filtered

With these improvements, it is now fair to say that the
nonclustered columnstore index is finally ready for prime time. It
was a great feature since its introduction in SQL Server 2012 but
the read only limitation always required workarounds; now you
can finally choose this type of index without having to work
around the limitations. But be aware: all the caveats that apply to
updating the clustered columnstore index since SQL Server 2014
apply to the now updatable nonclustered columnstore index as
well.

The ability to filter nonclustered columnstore indexes enables
some use cases that were previously impossible to implement.
For instance, if you know that recent data (e.g. orders placed in
the last month) is subject to lots of changes while older data
tends to be stable, you can choose to create a filtered
nonclustered columnstore index on just the older data, while
using filtered rowstore indexes on the recent data. This does
require manual work to periodically rebuild the indexes with a
more recent threshold in the filter.

Clustered columnstore index
Where, before SQL Server 2016, the nonclustered columnstore
index was crippled by not being updatable, the clustered
columnstore had other problems. Its lack of support for
constraints meant that every update done to the data came with
the risk of entering inconsistent data into the database. Not being
able to create additional nonclustered rowstore indexes meant
that the increased performance for data warehouse style queries
came at the price of decreased performance for lookups and
other OLTP-style work.

As you can see when you run the code below, these limitations
have now been lifted. The clustered columnstore index now can
easily be combined with constraints, and additional nonclustered
(rowstore) indexes can be created to get better performance for
very selective queries.

 CustomerKey,

 SalesOrderNumber,

 SalesOrderLineNumber

 SalesQuantity,

 SalesAmount,

 ReturnQuantity,

 ReturnAmount,

 DiscountQuantity,

 DiscountAmount,

 TotalCost,

 UnitCost,

 UnitPrice,

 ETLLoadID,

 LoadDate,

 UpdateDate)

WHERE DateKey >= '20080101';

UPDATE dbo.FactOnlineSales

SET ReturnQuantity = 1,

 ReturnAmount = 268.5

WHERE DateKey = '20090408';

Listing 13-3: Clustered columnstore indexes with constraints
and other indexes

As you can see, I had to drop the nonclustered columnstore
index before I could create the clustered columnstore index. It is
not permitted on any version of SQL Server to have more than
one columnstore index on the same table. It is also not permitted
to have multiple clustered indexes, regardless of whether they
are rowstore or columnstore, so I had to drop the primary key
constraint and its supporting clustered index as well. However,
after creating the clustered columnstore index I was able to
recreate the constraint (supported by a nonclustered rowstore
index) and then create an additional nonclustered index. And the
final query shows that I did all this without ever having to drop or
disable the existing foreign key constraints, as can be seen in the
output below

Zoom in | Open in new window

Figure 13-1: Foreign key constraints on a table with a
clustered columnstore index

In SQL Server 2014, the updatability of the clustered columnstore
came at a price: no other indexes and no constraints were

USE ContosoRetailDW;

go

-- Drop nonclustered columnstore created in

DROP INDEX NCI_FactOnlineSales

ON dbo.FactOnlineSales;

-- Drop existing clustered index (and the co

ALTER TABLE dbo.FactOnlineSales

DROP CONSTRAINT PK_FactOnlineSales_SalesKey;

-- Create a clustered columnstore index

CREATE CLUSTERED COLUMNSTORE INDEX CCI_FactO

ON dbo.FactOnlineSales;

-- Recreate primary key (now using a nonclus

ALTER TABLE dbo.FactOnlineSales

ADD CONSTRAINT PK_FactOnlineSales_SalesKey

 PRIMARY KEY NONCLUSTERED (OnlineSale

-- Create an extra nonclustered index

CREATE NONCLUSTERED INDEX ix_FactOnlineSales

ON dbo.FactOnlineSales(ProductKey);

-- Show that foreign keys are still there, a

SELECT [name],

 OBJECT_NAME(referenced_object_id) AS

 is_disabled

FROM sys.foreign_keys

WHERE parent_object_id = OBJECT_ID('dbo.Fac

javascript:;
javascript:;

possible. Now that SQL Server 2016 removes these limitations, I
can say without hesitation that the columnstore feature has now
finally reached maturity.

Columnstore indexes on memory
optimized tables
Memory optimized tables (also known by the feature’s code
name, Hekaton) were first introduced in SQL Server 2014 and,
also, hugely improved in SQL Server 2016. The Hekaton feature
was introduced in order to give high volume OLTP applications a
performance boost comparable to what columnstore indexes did
for data warehousing and reporting. All the table data is stored in
memory, the amount of logging (which is still on disk) is
minimized, all data structures are optimized to benefit from being
stored in memory, and all data access uses a fully lock- and
latch-free method so that concurrent connections never block
each other. (If you want to know more about this feature, I
recommend Kalen Delaney’s whitepaper).

This feature might seem to be as far removed from columnstore
indexes as it gets, but in SQL Server 2016, Microsoft enabled us
to create a clustered columnstore index on a memory-optimized
table. This columnstore index itself will be memory-optimized as
well: it is completely stored in memory; and the data structure is
very similar to that of a disk-based columnstore index, with some
small modifications to minimize the impact on OLTP performance.

The code in listing 13-4 shows how to create a columnstore index
on a memory-optimized table. The first part of the code sets up a
special filegroup for memory-optimized tables in the sample
database. This is a one-time task only; once the filegroup exists
you can create as many memory-optimized tables, with or without
a columnstore index, as you wish.

USE ContosoRetailDW;

go

-- Create a filegroup for memory-optimized t

ALTER DATABASE ContosoRetailDW

ADD FILEGROUP Contoso_MO

 CONTAINS MEMORY_OPTIMIZED_DATA;

ALTER DATABASE ContosoRetailDW

ADD FILE (NAME = 'Contoso_MemOpt',

 FILENAME = 'F:\DATA\Contoso_MemOpt

 TO FILEGROUP Contoso_MO;

go

CREATE TABLE dbo.MemOptDemo

 (KeyCol int NOT NULL,

 DataCol int NOT NULL,

 CONSTRAINT PK_MemOptDemo

 PRIMARY KEY NONCLUSTERED HASH (KeyCo

 WITH (BUCKET_COUNT = 65536))

WITH (MEMORY_OPTIMIZED = ON);

ALTER TABLE dbo.MemOptDemo

ADD INDEX csix_MemOptDemo CLUSTERED COLUMNST

https://msdn.microsoft.com/en-us/library/mt764316.aspx

Listing 13-4: Creating a memory-optimized table with a
columnstore index

In the code above, I have chosen to create the clustered
columnstore index in a separate ALTER TABLE statement. It is
also possible to define the index as part of the CREATE TABLE

statement, as was required with all indexes on memory-optimized
tables in SQL Server 2014.

Note, however, that a memory-optimized table with a clustered
columnstore index does not allow any further schema
modifications. So if you plan to also create multiple regular
memory-optimized indexes on the table, make sure to create the
clustered columnstore index last!

Real-time operational analytics
All three of the improvements for columnstore indexes mentioned
above are targeted towards the same goal, dubbed “real-time
operational analytics” by Microsoft marketing. A very short
summary of what this term encompasses is a shift away from the
classic distinction of OLTP and data warehouse Traditionally we
set up two databases: a purely transactional database optimized
for the concurrency and performance needs of an OLTP
workload, and a data warehouse optimized for the speed of
reporting and analytics. ETL jobs run at set intervals to bring the
data in the data warehouse up to date, but immediately after that
the data warehouse starts to fall behind until the ETL job runs
again.

With real-time operational analytics, you use a new architecture.
Just a single database, designed to handle both highly
concurrent OLTP workloads and large scale analytics queries
without paying the penalty of having two separate database
servers, with separate storage, separate license costs, ETL jobs
to copy the data, and lag in the reports. The various options we
have in SQL Server 2016 to combine columnstore indexes (for
the analytical queries) with traditional rowstore and even
memory-optimized indexes (for the OLTP workload) facilitate
such an architecture.

The assumption here is that the traditional data warehouse got its
data from a single SQL Server OLTP database. In more complex
scenarios where the data warehouse is fed from a variety of
sources, and the ETL jobs include business logic to handle
inconsistent or even conflicting versions of the truth from those
versions, you will still need the separate data warehouse if only to
serve as a single version of the truth for the business reports. But
even in that case, you can benefit from some of the
improvements to change your ETL feeds from a periodic big job
to a continuous near-realtime processing of changes.

There is, of course, no free lunch. Running this type of mixed
workload on a single database will always give you lower
performance for both OLTP and analytics as compared to having
two separate databases. But when you are prepared to pay that
price, you are rewarded by some nice benefits as well: reports
and dashboards created by analytics always draw from the most
current real-time data. Plus, you also save a lot in server, storage,
and licensing cost.

Specifically, for nonclustered columnstore indexes, you can
exercise control over how much the columnstore index affects
OLTP performance by creating a filtered nonclustered
columnstore index. Let’s say, for example, that you have an order

entry system where each order passes through multiple stages.
In the first stages the order data is “hot”: it changes frequently
and you like to avoid the overhead associated with modifying
data in a columnstore index (as described in level 6 of this
series). But once the order is final, you do want to have the
benefit of a columnstore index. In that case, you could create a
nonclustered columnstore index with a filter on the Status
column.

There are also scenarios where you do not have a simple filter to
separate the hot data out from the rest. In that case, you can
achieve a similar benefit by using the new “compression delay”
feature. This option forces SQL Server to wait at least the
specified time before compressing data in closed rowgroups. So
if you know that most of the changes to an order row will take
place within an hour after order entry, you could set the
compression delay to 60 minutes. Changes made within that
period will always operate on an open or closed delta store. If
changes are made after that time, then the data might already be
in compressed format, resulting in some extra overhead to
process the change. But if you chose the compression delay
wisely, then this should only happen rarely. The code in listing 13-
5 shows how you can set up such a compression delay.

Listing 13-5: Creating a nonclustered columnstore index with
compression delay

USE ContosoRetailDW;

go

-- Drop clustered columnstore created in a p

DROP INDEX CCI_FactOnlineSales

ON dbo.FactOnlineSales;

-- Create a nomclustered columnstore index w

CREATE NONCLUSTERED COLUMNSTORE INDEX NCI_Fa

ON dbo.FactOnlineSales (OnlineSalesKey,

 DateKey,

 StoreKey,

 ProductKey,

 PromotionKey,

 CurrencyKey,

 CustomerKey,

 SalesOrderNumber,

 SalesOrderLineNumber

 SalesQuantity,

 SalesAmount,

 ReturnQuantity,

 ReturnAmount,

 DiscountQuantity,

 DiscountAmount,

 TotalCost,

 UnitCost,

 UnitPrice,

 ETLLoadID,

 LoadDate,

 UpdateDate)

WITH (COMPRESSION_DELAY = 60);

http://www.sqlservercentral.com/articles/Stairway+Series/136174/

