
Thank this author by sharing: 0

 

2012/08/04
BLOG

2012/08/04
BLOG

2013/03/13

BLOG

2012/09/29
BLOG

2017/06/23

ARTICLE

 Log in  ::  Register  ::  Not logged in Search   Go  

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

 
 

 

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com  Sign up

 
 
 
   Rate this    Join the discussion   Add to briefcase

Pages and Extents:
Stairway to SQL Server
Indexes Level 4
By David Durant, 2011/02/01

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

In the preceding levels, we performed identical queries against
indexed and un-indexed tables, comparing the work required for
each.  Our primary metric was the “logical read”.  We were
always comparing the reads required to query the indexed table
versus the un-indexed table.  Now it is time to explain why logical
reads are an excellent metric and also explain what is actually
being read. 

When you submit a request for information to SQL Server, it
knows that it can always satisfy that request by scanning the
entire table(s).  SQL Server understands that an index benefits
the query only if using that index is less work than scanning the
entire table.  And if you were to ask SQL Server “What is work?”,
its primary answer would be “Disk I/O.”.  The IO required by a
query is a good indicator that query’s cost; mainly because IO
consumes two critical resources, time and memory. 

The I/O required to scan an entire table is an often
misunderstood metric because SQL Server does not read rows; it
reads pages.  And reading a page is a much different unit of work
than reading a row.

This level is shorter than most because it focuses solely on how
SQL Server performs IO.  And an understanding of SQL Server
IO is necessary for understanding why some indexes benefit a
query and others do not; or why some data modifications execute
faster than others; or why some index maintenance tasks require
less time than others.  In short, a basic knowledge of SQL Server
IO is necessary for understanding all subsequent levels in this
stairway.

Pages

 
Related Articles

SQL Server Quickie #2 - Extents

Yesterday I have uploaded my 2nd SQL
Server Quickie to YouTube. In this
episode I'm talking about E...

SQL Server Quickie #2 – Extents

Yesterday I have uploaded my 2nd SQL
Server Quickie to YouTube. In this
episode I’m talking about Ex...

Querying Microsoft SQL Server :
Basics of Indexes in SQL Server

Querying Microsoft SQL Server : Basics of
Indexes in SQL Server: Indexes in SQL
Server: If you see...

Basics of Indexes in SQL Server

Querying Microsoft SQL Server : Basics of
Indexes in SQL Server: Indexes in SQL
Server: If you see...

Clustered Indexes: Stairway to
SQL Server Indexes Level 3

Now that we've seen the basics of
indexing, and taken a deeper dive into
Nonclustered Indexes, this ...

Tags
indexing    
stairway series    

 

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.  

Stay up to date: 
 
Daily newsletters with brand new
articles, scripts, editorials and a
Question of the Day help you keep
on top of SQL Server.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=362446&zid=15220&t=1522616057&auth=c57face55a966cd0423963416c3b88e0
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72352%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=362444&zid=15491&t=1522616054&auth=7da1abbf6bda3e3cd904d4ca84271e42
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1063681.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/blogs/aschenbrenner/2012/08/04/sql-server-quickie-2-extents/
http://www.sqlservercentral.com/blogs/aschenbrenner/2012/08/04/sql-server-quickie-2-extents-1/
http://www.sqlservercentral.com/blogs/querying-microsoft-sql-server/2013/03/13/querying-microsoft-sql-server-basics-of-indexes-in-sql-server/
http://www.sqlservercentral.com/blogs/querying-microsoft-sql-server/2012/09/29/-basics-of-indexes-in-sql-server/
http://www.sqlservercentral.com/articles/72351/
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com


When you create a database, you specify the files in which your
database will be located.  SQL Server regards each file as one
long string of bytes.  It divides the file, logically but not physically,
into blocks of 8K bytes.  These 8K blocks are called pages.  Thus
the first 8K bytes of the file is page #0, the next 8K is page #1,
and so on.  A page is the smallest unit of I/O.  SQL Server always
reads or writes at least one page per I/O.  If multiple contiguous
pages need to be read or written, SQL Server may choose to do
them all in a single I/O.

A page is not only a unit of I/O; it is also a unit of ownership.  That
is, if a page contains a row from TableA, it will contain nothing but
rows from TableA; if it contains an entry from nonclustered
IndexB, it will contain nothing but entries from IndexB.  Along with
its data, each page contains some header information and a set
of offset pointers that help SQL Server locate individual rows or
entries on the page. 
In previous Levels, we have presented several figures to illustrate
the sequencing of entries in an index; be it a clustered or
nonclustered index.  Below, we expand one of those figures,
showing the clustered index SalesOrderDetail table, to reflect the
concept of pages:

SalesOrderID SalesOrderDetailID ProductID  

OrderQty UnitPrice

Page n-1: 

43668        106                722        

3          178.58 

43668        107                708        

1           20.19

Page n: 

43668        108                733        

3          356.90 

43668        109                763        

3          419.46 

43669        110                747        

1          714.70 

43670        111                710        

1            5.70 

43670        112                709        

2            5.70 

43670        113                773        

2        2,039.99 

43670        114                776        

1        2,024.99 

43671        115                753        

1        2,146.96 

43671        116                714        

2           28.84 

43671        117                756        

1          874.79

Page n+1: 

43671        118                768        

2          419.46 

43671        119                732        

2          356.90 

43671        120                763        

2          419.46 

43671        121                755        

2          874.79 



43671        122                764        

2          419.46 

43671        123                716        

1           28.84 

43671        124                711        

1           20.19 

43671        125                708        

1           20.19 

43672        126                709        

6            5.70 

43672        127                776        

2        2,024.99

Page n+2: 

43672        128                774        

1        2,039.99 

43673        129                754        

1          874.79 

43673        130                715        

3           28.84 

43673        131                729        

1          183.94

There is no requirement that the logical sequence and physical
sequence of pages be the same.  The sample data shown above
is spread across pages n, n+1, n+2, and n+3; but it could have
been spread over pages n, n+9, n-5 and n+2.  This deviation
between the logical and physical sequence is called external
fragmentation.  Correspondingly, the percentage of empty space
within a page referred to as the internal fragmentation of that
page.  In an upcoming Level, we look in greater detail at the
causes, implications, and cures of both types of fragmentation.

There is also no requirement that each page have the same
number of rows.  Usually, the normal activity of inserting and
deleting rows throughout the indexed table will cause each page
to have approximately, but not exactly, the same number of rows /
entries.  To be more correct, each page will have approximately,
but not exactly, the same amount, in bytes, of data.  If the rows or
index entries contain variable length columns, then the number of
rows per page may vary considerably even though the number of
bytes per page remains fairly even. 

The size of a row is equal to the size of its columns plus the row
overhead.  The amount of row overhead depends on a variety of
factors; but can be summarized as follows:

Six bytes per row for status information and length information.
One bit per fixed width column, rounding up to the nearest
byte.
If there are any variable length columns - four bytes for the
first, plus two bytes for each additional variable length column
An additional two bytes per row for the offset pointer located at
the end of the page.

Because SalesOrderDetail rows have a variable length column,
their size is not predetermined; but they average about 95 bytes
per row.  Since a page is 8K bytes in size, the number of rows per
page for the SalesOrderDetail table typically will be about 75;
considerably more than the ten per page shown in our example. 
In a future level we discuss the SQL Server management tools
that you can use to determine these numbers.

So, although we often speak of SQL Server as “reading rows”, it
can be misleading to do so.  SQL Server does not read rows; it



reads, at a minimum, pages.  And we have been misleading in
saying that an index allows SQL Server to quickly access a row
given its index key value.  It is more correct to say that an index
allows SQL Server to quickly access a page, not a row, given the
index key value. Once SQL Server has brought one or more
pages into memory, it examines the page and locates the row(s)
that was requested.

Extents
SQL Server does another logical grouping on top of pages; it
groups eight consecutive pages into a unit called an extent. 
Normally, an extent, like a page, is a unit of ownership.  If one
page in an extent is owned by TableA or IndexB, all eight pages
will be owned by that same object.  An exception is made for very
small tables and indexes, ones that would not fill and entire
extent.  In this case, more than on table or index might be located
in the same extent.  But for most objects, the extent is a unit of
ownership.

Thus, SQL Server does not look upon a table scan as having to
read all the rows of the table; but rather as having to read all the
pages or extents of the table.  It knows that it will be able to issue
I/O requests of 8K bytes, 64k bytes, or even more, possibly in
parallel, to read the table.  This makes the table scan a much less
intimidating option than it would be if each row had to be read
individually.

Not only does this reading of pages and extents mean that doing
a table scan is less work that we might expect; it also means that,
to benefit from a nonclustered index, a query must be more
selective than we might expect.  Consider the following
hypothetical query involving the SalesOrderDetail table that
requests, for the sake of illustration, approximately 4% of the
table’s rows:

Query: SELECT * 
FROM Sales.SalesOrderDetail 
WHERE ProductID = 712

Clustered Index: SalesOrderID / SalesOrderDetailID
Average Number of Rows
per Page:

75

Nonclustered Index: ProductID
Percentage of rows being
requested:

4%

Since only one row out of every twenty five will be selected, and
since their entries will be grouped together in the ProductID
nonclustered index, using the ProductID nonclustered index to
locate the rows in the table might seem like a good idea.  But
think again.

Thanks to its clustered index, the table, is in  SalesOrderID /
SalesOrderDetailID sequence; not ProductID sequence. 
Therefore, if the average page holds 75 rows; and the query
requests one row out of every 25, the average page will contain 3
of the requested rows; and almost every page will contain at least
one of the requested rows.  In other words, almost every page
will need to be read to satisfy the request.  And it would be best
to read them with a table scan; one that reads an extent, or more,
at a time; bringing an average of 24 requested rows (3 * 8) into
memory per read. 

Newcomers to SQL Server often ask “How selective must a query
be for a nonclustered index to be used?”  At this Level, you now



Thank this author by sharing: 0

know one answer to that question; “More selective than one row
per page.”  Information provided in future Levels will enable you
to become ever more accurate in determining which of your
indexes are beneficial and which are not.

Conclusion
SQL Server does not read rows; it reads data in units of one
page or more.  The page, which is the smallest unit of IO, is 8K in
size.  An extent is 8 consecutive pages in a data file.  Normally an
extent, and therefore its pages, contains rows or entries of a
single object; be it a heap or an index.  Because of the efficiency
provided by large units of IO, a query must be highly selective to
benefit from a nonclustered index.

In Level 5, we look at something you can do to increase the
possibility that a nonclustered index will benefit a query; a
possibility that becomes a near certainty when the index
becomes a covering index for one or more of your queries.  In
other words, the next Level is all about adding included columns
to your indexes.

Downloadable Code

Pages.SQL
 

Resources:
Level 4 - Pages.sql

This article is part of the Stairway to SQL Server Indexes
Stairway

Sign up to our RSS feed and get notified as soon as we publish a
new level in the Stairway! 

Keep up to date with SQL Server - new articles every
day.

your@email.com  Sign up

 
 
 
   Rate this    Join the discussion   Add to briefcase

Total article views: 12824 |  Views in the last 30 days: 22

http://www.sqlservercentral.com/Images/8457.sql
http://www.sqlservercentral.com/Files/Level%204%20-%20Pages.sql/8457.sql
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Xml/Rss/stairways
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1063681.aspx
javascript:;

