
Thank this author by sharing: 0

2015/11/05

ARTICLE

2015/07/11
BLOG

2014/07/20

BLOG

2015/06/25
ARTICLE

2014/07/21

ARTICLE

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Keep up to date -
daily newsletter:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Stairway to Columnstore
Indexes Level 6: Updating
and Deleting Data in a
Columnstore Index
By Hugo Kornelis, 2016/01/20

The Series
This article is part of the Stairway Series: Stairway to
Columnstore Indexes

SQL Server 2012 and later offer a very different type of index
from the traditional b-tree, the in-memory columnstore index.
These indexes use a column-based storage model, as well as a
new 'batch mode' of query execution and can offer huge
performance increases for certain workloads. But how are they
built, how do they work, and why do they manage to have such a
dramatic impact on performance? In this stairway, Hugo Kornelis
explains all, with his usual mix of concise description and detailed
demonstration.

In the previous level I discussed the difficulties of adding data to
columnstore indexes, and the workarounds implemented in SQL
Server 2014 to enable inserts into tables with columnstore
indexes – even if the inserted data is not always immediately
converted into column-oriented format.

But even in data warehouses, inserts are not the only
modification that has to be supported. We must also be able to
update and delete data. This level looks in detail at what happens
when we update or delete data from a clustered columnstore
index, the impact it has on concurrent data access, and how
without careful maintenance the efficiency of columnstore
indexes can degrade over time.

Challenges of modifying data in
Columnstore indexes
Deleting or updating data in compressed column-oriented storage
comes with a whole new set of challenges. Many compression
algorithms replace a value with a shorter value that is derived
from all preceding data. Changing or removing a single value at
the start of a block of compressed data would mean that the
compressed value for all successive values has to be
recomputed. And even in a relatively simple compression method
such as row-length encoding, a single update can result in having
to rewrite many pages of data.

Related Articles

Stairway to Columnstore
Indexes Level 5: Adding New
Data To Columnstore Indexes

Earlier levels have shown how
Columnstore Indexes work effectively with
static data. In most tables ...

COLUMNSTORE INDEX… DEMO

COLUMNSTORE INDEX How data is
stored in traditional way For physical
storage of a table, its rows...

Clustered Columnstore Indexes
– part 34 (“Deleted Segments
Elimination”)

Continuation from the previous 33 parts,
starting from
http://www.nikoport.com/2013/07/05/clustered-

Learning Columnstore Indexes

References and links to learn more about
columnstore indexes.

Columnstore Index Changes in
SQL Server 2014

SQL Server 2012 introduced columnstore
indexes, which can immensely improve
the performance of OLAP ...

Tags
columnstore index
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=362446&zid=15220&t=1522616858&auth=a8bcc6f30454a0c31e52624ef32892a4
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f136174%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=362444&zid=15491&t=1522616858&auth=e06dbb42d02a4d611691a97c33c11bea
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1749352.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/Hugo_Kornelis/264757/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/articles/133133/
http://www.sqlservercentral.com/blogs/sqlserversdba/2015/07/11/columnstore-index-demo/
http://www.sqlservercentral.com/blogs/nikos-blog/2014/07/20/clustered-columnstore-indexes-part-34-deleted-segments-elimination/
http://www.sqlservercentral.com/articles/127558/
http://www.sqlservercentral.com/articles/112059/
http://www.sqlservercentral.com/articles/ColumnStore+Index/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

Cost of in-place update: example

One of the compression methods used for columnstore
indexes, and one of the simpler compression methods to
understand, is row-length encoding. This method relies
heavily on sorting data efficiently before compressing it. If,
for instance, the sorted data has 17 consecutive rows with
the value Niko in the Name column, those 17 values would

be replaced by a single {Value, Occurrences} pair: {Niko,

17} (which can be read as “repeat the value Niko 17

times).

If the 6th of those rows would be updated to Kalen , the

most efficient choice would be to move it to the end of the
block of 17. But because rows are tied together by the
relative position of values in each segment that would
necessitate moving values in the corresponding segments
for other columns as well, so this is not possible. Hence, the
only way to reflect this change in a row-length encoded
column would be to replace the single pair {Niko, 17}

with a sequence of three pairs: {Niko, 5} / {Kalen,

1} / {Niko, 11} . This obviously takes more space, so

all the data following it now has to be moved down to make
room for this expansion. If this happens at the start of a one-
million row segment, you can imagine that a lot of pages will
have to be updated for this one modification.

Deleting data
It is, in theory, possible to delete data directly from a columnstore
index. But it’s not easy. The corresponding values need to be
found in and deleted from each of the rowgroup’s segments.
Depending on the compression type, this may require de- and
recompressing parts or even all of the data in the segment. The
end effect would be a DELETE statement that runs at a speed

that most people would not find acceptable. It is for that reason
that Microsoft has picked a different solution. To see how this
works, let’s first run the code in listing 6-1. This code will delete
one percent of the data, spread across all rowgroups.

USE ContosoRetailDW;

GO

-- Delete one percent of the rows, throughou

DELETE FROM dbo.FactOnlineSales2

WHERE OnlineSalesKey % 100 = 33;

-- Check the rowgroups metadata

SELECT OBJECT_NAME(rg.object_id) AS Ta

i.name AS IndexName,

i.type_desc AS IndexType,

rg.partition_number,

rg.row_group_id,

rg.total_rows,

rg.size_in_bytes,

rg.deleted_rows,

rg.[state],

rg.state_description

FROM sys.column_store_row_groups AS rg

INNER JOIN sys.indexes AS i

Listing 6-1: Deleting data from a columnstore

Zoom in | Open in new window

Figure 6-1: Metadata after deleting data

In comparison to the queries in the previous level, I added one
additional column to the resultset of the DMV query:
deleted_rows . This column is not used for deltastore rowgroups:
as these are stored in traditional row-oriented format, it is easy
enough for SQL Server to simply delete these rows. So that is
what SQL Server will do, for all rows to be deleted from both
open and closed deltastores. If you compare total_rows of
rowgroup 18 to what it was before deleting data, you will see that
669 rows were deleted from this rowgroup.

But for rowgroups that are already in columnstore format (state 3,
COMPRESSED), a different method was used. These rows were

not actually deleted from the columnstore blobs. Instead, SQL
Server simply marks the row as deleted without removing any
data. The data itself is still present in the index, but the “deleted”
mark tells SQL Server to ignore this data and pretend it isn’t
there. The data returned by the DMV query reflects this method
of logically deleting the data without physically removing it – the
total_rows of the rowgroups has not been changed, because all
the rows are still there; the deleted_rows column tells us how
many of these rows are no longer valid. If you have a clustered
columnstore index that is frequently modified, you should monitor
these numbers to decide when it is time to free up wasted space
(and regain performance) by physically removing the deleted data
– I’ll cover more about that in the next level of this series.

The bitmap that is not a bitmap

When rows in a columnstore index have to be marked as
deleted, an extra storage structure is added to the index.
This storage structure is often referred to as the “ Deleted
Bitmap ”, but that is actually a misleading name. The delete
marks are not stored as a bitmap, but in an internal, row-
compressed B-tree, as a virtual two-column table storing only
rowgroup number and row number of the row within that
rowgroup.

Luckily, we do not have to concern us with these
implementation details. I do want to point it out, because
bitmaps tend to have a fixed size, whereas the actual
storage of delete marks grows as more rows in the rowgroup
are deleted.

Updating data

ON i.object_id = rg.objec

AND i.index_id = rg.index

WHERE i.name = N'CCI_FactOnlineSales2'

ORDER BY TableName, IndexName,

rg.partition_number, rg.row_group_id;

javascript:;
javascript:;

Logically speaking, updating data can be considered as
equivalent to deleting the old version of the data and inserting the
new data. In the case of SQL Server, this is exactly what happens
when rows in a columnstore are updated. Not the rows that are
still in a deltastore: these are still in a B-tree, so they can easily
be processed by the regular update mechanism. But for the rows
that are already compressed in columnstore rowgroups, every
update is processed by marking the old row as deleted and trickle
inserting the new data in a deltastore.

You can see this in action by running the code in listing 6-2. This
code updates about 20% of the data in the table, well over two
million rows. That takes time (12 minutes on my test system, a
VM on my laptop), but I chose this high number because I wanted
to demonstrate that, even for extremely large updates, the new
rows are always added as trickle inserts, not using the bulk load
mechanism that loads the data directly in column-oriented format.

Listing 6-2: Updating data in a columnstore

Zoom in | Open in new window

Figure 6-2: Metadata after updating data

USE ContosoRetailDW;

GO

-- Update twenty percent of the rows, throug

UPDATE dbo.FactOnlineSales2

SET UpdateDate = CURRENT_TIMESTAMP

WHERE OnlineSalesKey % 5 = 2;

-- Check the rowgroups metadata

SELECT OBJECT_NAME(rg.object_id) AS Ta

i.name AS IndexName,

i.type_desc AS IndexType,

rg.partition_number,

rg.row_group_id,

rg.total_rows,

rg.size_in_bytes,

rg.deleted_rows,

rg.[state],

rg.state_description

FROM sys.column_store_row_groups AS rg

INNER JOIN sys.indexes AS i

ON i.object_id = rg.objec

AND i.index_id = rg.index

WHERE i.name = N'CCI_FactOnlineSales2'

ORDER BY TableName, IndexName,

rg.partition_number, rg.row_group_id;

javascript:;
javascript:;

If you look at the result after running the code in listing 6-2, you
will see that there are now many rows marked as deleted in the
compressed rowgroups. You also see two closed and one open
rowgroup, the result of adding over two million “new” (updated)
rows as trickle inserts into the deltastores. After at most five
minutes, the tuple mover will kick in and start to convert these
rowgroups to columnstore format. As explained before, this will
be done for one rowgroup at a time, with intervals of 10-15
seconds between the rowgroups.

If we had updated the entire table, all originally compressed
rowgroups would now be empty. They would still exist and
contain all the original data, but all rows in them would be marked
as deleted. At the same time, all 13.5 million rows in the table
would have been inserted in 14 deltastores, that would then, over
time, be converted to columnstore format by the tuple mover. As
mentioned in the previous level, the tuple mover is a slow worker
so it will take time until all rows are converted to columnstore
format; during this time, queries that use the columnstore index
will be slow. And after that, we still have all the old rowgroups
taking up disk space because the deleted data is still there, until
we take explicit action to rebuild the index. The mechanism used
for updating data in a columnstore index has not been designed
for this type of mass update. It works very well and with only
minimal performance impact for occasional updates of single
rows or small subsets of the population, but not for mass updates
of the entire table or large subsets.

Locking and blocking
The read-only limitation of the nonclustered columnstore index
automatically limited the options for data modification to just two
strategies: either you would disable the index, make the
modifications, then rebuild the index; or you would swap in and
out entire partitions of the table – a very common strategy for the
incremental load of a data warehouse. Both of these strategies
will normally be done when there is no concurrent activity. But the
option of modifying data in a clustered columnstore index in SQL
Server 2014 means that we will now see modifications during
business hours – so obviously we can also expect to see locking
and blocking. To check how these modifications affect
concurrency, let’s investigate the locks taken for a simple update
of a single row. First, run the code from listing 6-3. Note that the
ROLLBACK statement has deliberately been put in a comment

block. We will later undo the change by selecting just the line with
the ROLLBACK statement and then executing that selection, but

we need the transaction to remain open for now.

USE ContosoRetailDW;

GO

-- Start a transaction, so we can investigat

BEGIN TRAN;

-- Update just a single row

UPDATE dbo.FactOnlineSales2

SET UpdateDate = CURRENT_TIMESTAMP

WHERE OnlineSalesKey = 30000002;

-- Do not rollback the transaction yet!

/*

Listing 6-3: Updating a single row

After running this update, open another tab in Management
Studio and use it to run the code in listing 6-4 to get an overview
of all locks currently held in the database.

Listing 6-4: Checking the locks

Zoom in | Open in new window

Figure 6-3: Locks for a single update

As you see, updating a single row results in two exclusive locks,
both on a full rowgroup. To see which rowgroup is locked, check
the last part of the resource_description column. On my system,
rowgroups 21 and 23 are locked. Rowgroup 23 is where the
updated row used to be stored; the lock is needed to mark the
row as deleted. Rowgroup 21 is the open deltastore, where the
contents of the row after the update are added. When you run
this code, you may see different rowgroup numbers. That’s
because how rows are distributed among rowgroups, and even
the number of rowgroups created, depends on factors like
processors and memory available when the columnstore index is
created. Even when dropping and recreating the same
columnstore index on the same instance, the rowgroup
distribution can be different. You may also see only a lock on the
open delta store; in that case the row you updated was moved
there as a result of a previous update.

ROLLBACK TRAN;

*/

USE ContosoRetailDW;

GO

-- Check the locks that are taken

-- (Query adapted from http://www.nikoport.c

SELECT l.request_session_id,

DB_NAME(l.resource_database_id) AS database_

CASE

WHEN l.resource_type = 'OBJECT'

THEN OBJECT_NAME(l.resource_associated_entit

ELSE OBJECT_NAME(p.[object_id])

END AS [object_name],

i.name AS index_name,

l.resource_type,

l.resource_description,

l.request_mode,

l.request_status

FROM sys.dm_tran_locks AS l

INNER JOIN sys.partitions AS p

ON p.hobt_id = l.resource_associated_entit

INNER JOIN sys.indexes AS i

ON i.[object_id] = p.[object_id]

AND i.index_id = p.index_id

WHERE l.resource_associated_entity_id >

AND l.resource_database_id = DB_ID()

ORDER BY l.request_session_id, resource_as

javascript:;
javascript:;

In figure 6.3 above, you also see U locks on rowgroups 0 through
3. SQL Server takes a U lock on all rowgroups it scans for an
UPDATE statement. Normally that U lock is released when the

rowgroups is scanned with no rows found to be updated, but due
to internals of the processing mechanism that are out of scope for
this article, these U locks are sometimes held. Do not worry if
these locks do not show up when you run the code.

Locking full rowgroups is not very granular. However, it gets
worse when you investigate the actual result of these locks. To
see why, open a third query window and execute the code in
listing 6-5, to retrieve data about a single row. On my system, this
row resides in rowgroup 2. (I verified this before running the code
in listing 6-3, by running that same code with OnlineSalesKey
31000000, using the code in listing 6-4 to check the locked
rowgroups, and then rolling back the change). This rowgroup has
only a U lock, which does not block queries that read data, so
you might expect that this query will return. That is not the case. It
will wait indefinitely, because it is blocked by the update from our
first query. We can easily verify this by rerunning listing 6-4 to
check the locks, which now returns eight rows as shown in figure
6-4.

Listing 6-5: Trying to read a single row

Zoom in | Open in new window

Figure 6-4: Select blocked by the update

These blocks occur because the optimizer doesn’t know that
values in the OnlineSalesKey column are unique. We were
unable to tell SQL Server, because one of the many restrictions
for clustered columnstore indexes is that they don’t support
PRIMARY KEY or UNIQUE constraints on the table. (We’ll see

more details on these restrictions in a later level). So even though
SQL Server does find a row in rowgroup 2, it still wants to search
all other rowgroups to see if there are more matching rows;
hence it has to wait until the locks on rowgroups 21 and 23 are
lifted. If you go back to listing 6-3 and execute only the
ROLLBACK statement, you will see that the query running listing

6-5 now finishes, and rerunning listing 6-4 will not return any
results. Committing the update would of course have had the
same effect.

Effectively, the locks taken at rowgroup level block almost all
concurrent access to the table. There are only a few very specific
scenarios where this is not the case. To see one of them, rerun
listing 6-3 to acquire the same locks again, then run listing 6-6.
This is the same as listing 6-5, but with a TOP(1) clause

added. This query will actually return results immediately. After
finding the matching row in rowgroup 2, SQL Server no longer
needs to check for matches in other rowgroups. It does not need

USE ContosoRetailDW;

GO

-- Run a simple query

SELECT OnlineSalesKey, StoreKey, CustomerKey

FROM dbo.FactOnlineSales2

WHERE OnlineSalesKey = 31000000;

javascript:;
javascript:;

