
Docs / SQL / Relational databases / Security / Encryption

Transparent Data Encryption (TDE)

In this article

THIS TOPIC APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse

Parallel Data Warehouse

 03/09/2017 • 10 minutes to read • Contributors

About TDE

Using Transparent Data Encryption

Commands and Functions

Catalog Views and Dynamic Management Views

Permissions

Considerations

Transparent Data Encryption and Buffer Pool Extension

Transparent Data Encryption and In-Memory OLTP

Related Tasks

Related Content

See Also

For content related to previous versions of SQL Server, see Transparent Data Encryption (TDE).

Transparent Data Encryption (TDE) encrypts SQL Server, Azure SQL Database, and Azure SQL Data

Warehouse data files, known as encrypting data at rest. You can take several precautions to help secure

the database such as designing a secure system, encrypting confidential assets, and building a firewall

around the database servers. However, in a scenario where the physical media (such as drives or backup

tapes) are stolen, a malicious party can just restore or attach the database and browse the data. One

solution is to encrypt the sensitive data in the database and protect the keys that are used to encrypt the

data with a certificate. This prevents anyone without the keys from using the data, but this kind of

protection must be planned in advance.

TDE performs real-time I/O encryption and decryption of the data and log files. The encryption uses a

database encryption key (DEK), which is stored in the database boot record for availability during

 Feedback Edit Share | Theme Light

Transparent Data Encryption (TDE)

FEEDBACK

https://docs.microsoft.com/en-us/
https://docs.microsoft.com/en-us/sql/index
https://docs.microsoft.com/en-us/sql/relational-databases/database-features
https://docs.microsoft.com/en-us/sql/relational-databases/security/security-center-for-sql-server-database-engine-and-azure-sql-database
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/sql-server-encryption
https://github.com/edmacauley
https://github.com/CarlRabeler
https://msdn.microsoft.com/library/bb934049(SQL.120).aspx
https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/security/encryption/transparent-data-encryption.md
https://www.microsoft.com/

About TDE

recovery. The DEK is a symmetric key secured by using a certificate stored in the master database of the

server or an asymmetric key protected by an EKM module. TDE protects data "at rest", meaning the data

and log files. It provides the ability to comply with many laws, regulations, and guidelines established in

various industries. This enables software developers to encrypt data by using AES and 3DES encryption

algorithms without changing existing applications.

 Important

TDE does not provide encryption across communication channels. For more information about how

to encrypt data across communication channels, see Enable Encrypted Connections to the Database

Engine (SQL Server Configuration Manager).

Related topics:

Transparent Data Encryption with Azure SQL Database

Get started with Transparent Data Encryption (TDE) on SQL Data Warehouse

Move a TDE Protected Database to Another SQL Server

Enable TDE on SQL Server Using EKM

Use SQL Server Connector with SQL Encryption Features

The SQL Server Security Blog on TDE with FAQ

Encryption of the database file is performed at the page level. The pages in an encrypted database are

encrypted before they are written to disk and decrypted when read into memory. TDE does not increase

the size of the encrypted database.

Information applicable to SQL Database

When using TDE with SQL Database V12 the server-level certificate stored in the master database is

automatically created for you by SQL Database. To move a TDE database on SQL Database you must

decrypt the database, move the database, and then re-enable TDE on the destination SQL Database. For

step-by-step instructions for TDE on SQL Database, see Transparent Data Encryption with Azure SQL

Database.

Information applicable to SQL Server

After it is secured, the database can be restored by using the correct certificate. For more information

about certificates, see SQL Server Certificates and Asymmetric Keys.

When enabling TDE, you should immediately back up the certificate and the private key associated with

the certificate. If the certificate ever becomes unavailable or if you must restore or attach the database on

another server, you must have backups of both the certificate and the private key or you will not be able

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/enable-encrypted-connections-to-the-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption-azure-sql
https://azure.microsoft.com/documentation/articles/sql-data-warehouse-encryption-tde-tsql/
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/move-a-tde-protected-database-to-another-sql-server
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/enable-tde-on-sql-server-using-ekm
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/use-sql-server-connector-with-sql-encryption-features
https://blogs.msdn.microsoft.com/sqlsecurity/2016/10/05/feature-spotlight-transparent-data-encryption-tde/
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption-azure-sql
https://docs.microsoft.com/en-us/sql/relational-databases/security/sql-server-certificates-and-asymmetric-keys

Using Transparent Data Encryption

to open the database. The encrypting certificate should be retained even if TDE is no longer enabled on

the database. Even though the database is not encrypted, parts of the transaction log may still remain

protected, and the certificate may be needed for some operations until the full backup of the database is

performed. A certificate that has exceeded its expiration date can still be used to encrypt and decrypt

data with TDE.

Encryption Hierarchy

The following illustration shows the architecture of TDE encryption. Only the database level items (the

database encryption key and ALTER DATABASE portions are user-configurable when using TDE on SQL

Database.

1

To use TDE, follow these steps.

Applies to: SQL Server.

Create a master key

Create or obtain a certificate protected by the master key

SQL Copy

USE master;
GO
CREATE MASTER KEY ENCRYPTION BY PASSWORD = '<UseStrongPasswordHere>';
go
CREATE CERTIFICATE MyServerCert WITH SUBJECT = 'My DEK Certificate';
go
USE AdventureWorks2012;
GO
CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE MyServerCert;
GO
ALTER DATABASE AdventureWorks2012
SET ENCRYPTION ON;
GO

Commands and Functions

Create a database encryption key and protect it by the certificate

Set the database to use encryption

The following example illustrates encrypting and decrypting the AdventureWorks2012 database

using a certificate installed on the server named MyServerCert .

The encryption and decryption operations are scheduled on background threads by SQL Server. You can

view the status of these operations using the catalog views and dynamic management views in the list

that appears later in this topic.

 Caution

Backup files of databases that have TDE enabled are also encrypted by using the database

encryption key. As a result, when you restore these backups, the certificate protecting the database

encryption key must be available. This means that in addition to backing up the database, you have

to make sure that you maintain backups of the server certificates to prevent data loss. Data loss will

result if the certificate is no longer available. For more information, see SQL Server Certificates and

Asymmetric Keys.

The TDE certificates must be encrypted by the database master key to be accepted by the following

statements. If they are encrypted by password only, the statements will reject them as encryptors.

 Important

https://docs.microsoft.com/en-us/sql/relational-databases/security/sql-server-certificates-and-asymmetric-keys

Command or function Purpose

CREATE DATABASE ENCRYPTION KEY (Transact-SQL) Creates a key that is used to encrypt a database.

ALTER DATABASE ENCRYPTION KEY (Transact-SQL) Changes the key that is used to encrypt a database.

DROP DATABASE ENCRYPTION KEY (Transact-SQL) Removes the key that was used to encrypt a database.

ALTER DATABASE SET Options (Transact-SQL) Explains the ALTER DATABASE option that is used to
enable TDE.

Catalog Views and Dynamic Management Views

Catalog view or dynamic management view Purpose

sys.databases (Transact-SQL) Catalog view that displays database information.

sys.certificates (Transact-SQL) Catalog view that shows the certificates in a database.

sys.dm_database_encryption_keys (Transact-SQL) Dynamic management view that provides information
about the encryption keys used in a database, and the
state of encryption of a database.

Permissions

Considerations

Altering the certificates to be password-protected after they are used by TDE will cause the database

to become inaccessible after a restart.

The following table provides links and explanations of TDE commands and functions.

The following table shows TDE catalog views and dynamic management views.

Each TDE feature and command has individual permission requirements, described in the tables shown

earlier.

Viewing the metadata involved with TDE requires the VIEW DEFINITION permission on the certificate.

While a re-encryption scan for a database encryption operation is in progress, maintenance operations to

the database are disabled. You can use the single user mode setting for the database to perform the

maintenance operation. For more information, see Set a Database to Single-user Mode.

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-encryption-key-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-encryption-key-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/drop-database-encryption-key-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-set-options
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-databases-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-certificates-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-database-encryption-keys-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/databases/set-a-database-to-single-user-mode

Restrictions

You can find the state of the database encryption using the sys.dm_database_encryption_keys dynamic

management view. For more information, see the "Catalog Views and Dynamic Management

Views"section earlier in this topic).

In TDE, all files and filegroups in the database are encrypted. If any filegroups in a database are marked

READ ONLY, the database encryption operation will fail.

If a database is being used in database mirroring or log shipping, both databases will be encrypted. The

log transactions will be encrypted when sent between them.

 Important

Full-text indexes will be encrypted when a database is set for encryption. Full-text indexes created

prior to SQL Server 2008 will be imported into the database during upgrade to SQL Server 2008 or

greater and they will be encrypted by TDE.

 Tip

To monitor changes in the TDE status of a database, use SQL Server Audit or SQL Database Auditing.

For SQL Server, TDE is tracked under the audit action group DATABASE_CHANGE_GROUP which can

be found in SQL Server Audit Action Groups and Actions.

The following operations are not allowed during initial database encryption, key change, or database

decryption:

Dropping a file from a filegroup in the database

Dropping the database

Taking the database offline

Detaching a database

Transitioning a database or filegroup into a READ ONLY state

The following operations are not allowed during the CREATE DATABASE ENCRYPTION KEY,

ALTER DATABASE ENCRYPTION KEY, DROP DATABASE ENCRYPTION KEY, or ALTER

DATABASE...SET ENCRYPTION statements.

Dropping a file from a filegroup in the database.

Dropping the database.

https://docs.microsoft.com/en-us/sql/relational-databases/security/auditing/sql-server-audit-action-groups-and-actions

Transparent Data Encryption and Transaction Logs

Copy

USE AdventureWorks2012;
GO
/* The value 3 represents an encrypted state
 on the database and transaction logs. */

Taking the database offline.

Detaching a database.

Transitioning a database or filegroup into a READ ONLY state.

Using an ALTER DATABASE command.

Starting a database or database file backup.

Starting a database or database file restore.

Creating a snapshot.

The following operations or conditions will prevent the CREATE DATABASE ENCRYPTION KEY,

ALTER DATABASE ENCRYPTION KEY, DROP DATABASE ENCRYPTION KEY, or ALTER

DATABASE...SET ENCRYPTION statements.

The database is read-only or has any read-only file groups.

An ALTER DATABASE command is executing.

Any data backup is running.

The database is in an offline or restore condition.

A snapshot is in progress.

Database maintenance tasks.

When creating database files, instant file initialization is not available when TDE is enabled.

In order to encrypt the database encryption key with an asymmetric key, the asymmetric key

must reside on an extensible key management provider.

Enabling a database to use TDE has the effect of "zeroing out" the remaining part of the virtual

transaction log to force the next virtual transaction log. This guarantees that no clear text is left in the

transaction logs after the database is set for encryption. You can find the status of the log file encryption

by viewing the encryption_state column in the sys.dm_database_encryption_keys view, as in this

example:

