
Thank this author by sharing: 0

2008/06/17

FORUM

2012/11/19

FORUM

2009/07/22
FORUM

2012/09/07
FORUM

2010/02/22
FORUM

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Bookmarks in SQL Server
Indexes: Stairway to SQL
Server Indexes Level 6
By David Durant, 2011/08/03

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

In the preceding level, we have looked at indexes as a set of
sequenced entries; one entry per row. We have emphasized the
logical aspects of indexes more than the physical, concentrating
on the data that is in each entry and on the impact of having that
data in index key sequence. Thus far, we have covered the first
two components of a nonclustered index entry; the search key
and the included columns. In this level, we examine the third,
and last, component; the bookmark.

What's in the Bookmark?
The bookmark has been mentioned before, but only to say that it
enables SQL Server to "quickly" navigate from the nonclustered
index entry to the corresponding row. Now, it is time to go into
more detail regarding these bookmarks, for the content of the
bookmark differs depending upon whether the underlying table is
a heap or a clustered index.

Regardless of whether the table is a heap or a clustered index,
each row in a table is the nth row on its page. That page is the
nth page in its data file. And that file is the nth file in the set of
files that comprise the database. Therefore, each row in a
database, at any given point in time, can be identified by three
numbers; file number - page number - row number. This
identifying composite of three numbers is called the row id,
usually shortened to RID. Most tools that display SQL Server
internals information will display these three numbers separated
by colons (instead of hyphens). So the 12th row on the 77th page
of file 1 would have a RID of 1:77:12.

Generally speaking, the rows of a heap do not move; once they
have been inserted into a page they remain on that page. To be

Related Articles

Clustered Index -
sys.dm_db_index_usage_stats

Bookmark Lookup on a Clustered Index

Question about included
columns in nonclustered
indexes: Where exactly are they
stored?

Do nonclustered indexes just store
pointers to clustered indexes?If so where
are the included column...

Nonclustered index count

Nonclustered index count

Indexes

Clustered Index and Nonclustered Index

Nonclustered indexes

How are null values handled on a column
with a nonclustered index?

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=328527&zid=15220&t=1522616124&auth=84982194255af3e426b29fa59f4600c2
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72281%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522616124&auth=82f72f6e058b9d564579f143039c9e10
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1063693.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Forums/FindPost518204.aspx
http://www.sqlservercentral.com/Forums/FindPost579285.aspx
http://www.sqlservercentral.com/Forums/FindPost757165.aspx
http://www.sqlservercentral.com/Forums/FindPost693746.aspx
http://www.sqlservercentral.com/Forums/FindPost870876.aspx
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

more technically-precise: rows in a heap seldom move, and when
they do move, they leave a forwarding address at the old
location. The rows of a clustered index, however, can move; that
is, they can be relocated to another page during data modification
or index reorganization. More details concerning what happens
as rows are modified, including information about forwarding
rows, will be provided in later levels.

Since the rows of a heap do not move, the RID permanently
identifies each row in the heap. Not only is this value permanent,
it also physically defines the location of the row. This makes it the
ideal value to be used as the bookmark value in a heap's
nonclustered indexes, which is why SQL Server uses it in all
nonclustered indexes created on all heaps.

A Heap's Nonclustered Index: RID-
based Bookmarks
So, let's say the SalesOrderDetail table were a heap; having

its rows in no specified sequence, and we then created the index
that we used in Level 5, the nonclustered index on ProductID /

ModifiedDate with the same included columns, as shown in

Listing 6.1.

Listing 6.1: A non-clustered index with included columns

In the index, the sequenced entries would look like this:

:- Key Columns -: :--- Included Columns -

--: : Bookmark :

ProductID ModifiedDate OrderQty UnitPrice

LineTotal

----------- ------------ -------- ---------

--------- -------------

Page n-1:

709 01 Feb 2002 1

5.70 5.70 3:9198:41

709 01 May 2002 1

5.70 5.70 3:969:2

710 01 Jul 2001 1

5.70 5.70 3:9840:29

710 01 Jul 2001 1

5.70 5.70 3:9916:29

710 01 Sep 2001 1

5.70 5.70 4:12331:32

Page n:

710 01 Oct 2001 1

5.70 5.70 3:1911:33

710 01 Nov 2001 1

5.70 5.70 4:2604:34

710 01 Nov 2001 1

5.70 5.70 4:2889:34

710 01 Nov 2001 1

5.70 5.70 3:3522:35

CREATE NONCLUSTERED INDEX FK_ProductID_Modif

ON Sales.SalesOrderDetail(ProductID, Modifie

INCLUDE (OrderQty, UnitPrice, LineTotal)

710 01 Nov 2001 1

5.70 5.70 3:3623:35

710 01 Jun 2002 1

5.70 5.70 4:3917:5

712 01 Jul 2001 1

 5.19 5.19 3:9886:29

712 01 Jul 2001 1

5.19 5.19 3:10270:29

712 01 Aug 2001 1

5.19 5.19 4:10609:30

712 01 Aug 2001 1

5.19 5.19 4:10617:30

Page n+1:

712 01 Aug 2001 1

5.19 5.19 4:10689:30

712 01 Aug 2001 1

5.19 5.19 4:10885:30

712 01 Aug 2001 1

5.19 5.19 4:11002:30

712 01 Sep 2001 1

5.19 5.19 4:12318:32

712 01 Sep 2001 1

5.19 5.19 4:509:32

The bookmark values for the rows of our index are very efficient,
pointing directly to the corresponding rows; but they are
dependent upon the underlying table being a heap. And although
these values are very efficient for doing row lookups, they contain
no information that has any value to the user.

The alternative to this type of RID-based bookmark, is the
bookmark that is used when a nonclustered index is created on a
table that has a clustered index; or, to be succinct and precise,
the bookmark of a clustered index's non-clustered index.

A Clustered Index's Nonclustered
Index: Key-based Bookmarks
If the table is a clustered index, then the rows can be relocated
within the table. Therefore, for clustered indexes, the RID does
not permanently identify the row, and a different value must be
used as the non-clustered index bookmark value. The value that
is used is the index key of the clustered index.

This solves the need for a consistent bookmark value. For when
a row of a clustered index is moved to a new page, it is only
moved, it is not modified; the clustered index key value remains
unchanged. Thus, the bookmark value can always be used to
retrieve the corresponding row; it just means that the row will
retrieved via the clustered index rather than by its physical
location.

However, this use of the clustered index key as the nonclustered
index bookmark means that the clustered index key should meet
three criteria:

It must be unique. Each index entry bookmark must allow
SQL Server to find the one row in the table that corresponds to
that entry. If you create a clustered index that is not unique,
SQL Server will make the clustered index unique by
generating an additional value that "breaks the tie" for
duplicate keys. This extra value is generated by SQL Server to

create uniqueness is called the uniquifier and is transparent
to any client application. You should carefully consider whether
or not to allow duplicates in a clustered index, for the following
reasons:

Generating uniquifiers is extra overhead. SQL Server must
decide, at insert time, if a new row's key is a duplicate of an
existing row's key; and, if so, generate a uniquifier values to
add to the new row
The uniquifier is a meaningless piece of information; a
meaningless piece of information that is being propagated
into the table's nonclustered indexes. It's usually better to
propagate a meaningful piece of information into the
nonclustered indexes.

It should be short. That is, it should contain a small number
of bytes; for it will be propagated into the all nonclustered
indexes. Last name / first name / middle name / street address
as the clustered index for the Contact table might seem like

a good idea; but if there are multiple nonclustered indexes on
the table, it is not a good idea. If there are n nonclustered
indexes on the table, then every contact's last name / first
name / middle name / street address value will be stored in
n+1 locations.
It should be static. That is, its values should seldom change.
A change in the value of the clustered index key for a row
forces that row's entry in each nonclustered index to be
updated with the new key value. Thus, for a table with n non-
clustered indexes, a single update of a clustered index key
column turns into n+1 updates (not to mention n+1 log file
inserts)

When the AdventureWorks design team chose a clustered

index for the SalesOrderDetail table, they adhered to all

three of the guidelines. By choosing SalesOrderID /

SalesOrderDetailID as the clustered index key they

achieved narrow, static and unique. By adding SalesOrderID

as the left most column of the key, even though
SalesOrderDetailID alone is unique, they got clustering; all

the rows for a single order grouped together on the same page or
two. By making SalesOrderID / SalesOrderDetailID the

primary key of the table as well as the clustered index key, they
eliminated the need for a separate index on
SalesOrderDetailID. No one ever asks to see line item #7

anyway; they ask to see the all line items for order #47386 or
they ask to see line item #7 of order #47386. Most important of
all, as we have said several times, they forced the table to be in
the sequence that best served the overall application.

Now, if we create the same nonclustered index as shown in
Listing 6.1, but this time on the clustered index version of the
SalesOrderDetail table, the sequenced entries in the index

would look like this:

:- Key Columns -: : --- Included Columns

---: :--- Bookmark ---:

ProductID ModifiedDate OrderQty UnitPrice

LineTotal OrderId DetailId

----------- ------------ -------- ---------

--------- ----------- ----------

Page n-1:

709 01 Feb 2002 1

5.70 5.70 45329 6392

709 01 May 2002 1

5.70 5.70 46047 8601

710 01 Jul 2001 1

5.70 5.70 43670 111

710 01 Jul 2001 1

5.70 5.70 43676 152

710 01 Sep 2001 1

5.70 5.70 44075 1448

Page n:

710 01 Oct 2001 1

5.70 5.70 44303 2481

710 01 Nov 2001 1

5.70 5.70 44484 2853

710 01 Nov 2001 1

5.70 5.70 44499 3006

710 01 Nov 2001 1

5.70 5.70 44523 3346

710 01 Nov 2001 1

5.70 5.70 44527 3400

710 01 Jun 2002 1

5.70 5.70 46365 10183

712 01 Jul 2001 1

5.19 5.19 43673 136

712 01 Jul 2001 1

5.19 5.19 43694 342

712 01 Aug 2001 1

5.19 5.19 43846 524

712 01 Aug 2001 1

5.19 5.19 43847 528

Page n-1:

712 01 Aug 2001 1

 5.19 5.19 43851 567

712 01 Aug 2001 1

5.19 5.19 43863 672

712 01 Aug 2001 1

5.19 5.19 43871 735

712 01 Sep 2001 1

5.19 5.19 44074 1441

712 01 Sep 2001 1

5.19 5.19 44109 1729

Both versions of our nonclustered index, the 'created on the heap'
version shown earlier and the 'created on the clustered index'
version shown here, are identical except for their bookmark
values.

Which is Better?
Is one of these designs better than the other? Maybe, but there is
not much in it, either way. The RID bookmarks allow for a faster
lookup of rows in the underlying table; a lookup necessitated by
the failure of the index to cover the query. The index key
bookmarks result in a slower lookup of rows in the underlying
table, but increase the possibility that the index will cover the
query, and often contain the foreign key value needed for doing a
JOIN.

Thank this author by sharing: 0

The real answer to the question "Which is better?" is "Neither!"
When indexing a table, the most important decision is: What
index, if any, should be the clustered index for this table? Once
that decision has been made (in accordance with the three
guidelines mentioned earlier in this level), you needn't worry
about the impact of that decision on your nonclustered indexes;
they'll perform just fine.

Conclusion
A nonclustered index entry consists of search key columns,
included columns, and the bookmark. The bookmark value will be
either a RID or the clustered index's key, depending upon
whether the table is a heap or a clustered index. Choosing the
best clustered index for a table requires that you follow three
guidelines to ensure that the index key will make a good
bookmark.

This article is part of the Stairway to SQL Server Indexes
Stairway

Sign up to our RSS feed and get notified as soon as we publish a
new level in the Stairway!

Keep up to date with SQL Server - new articles every
day.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Total article views: 13226 | Views in the last 30 days: 21

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Xml/Rss/stairways
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1063693.aspx
javascript:;

