
Thank this author by sharing: 0

2014/12/12

BLOG

2017/05/17

ARTICLE

2014/08/28

ARTICLE

2018/02/05

ARTICLE

2016/01/04

ARTICLE

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Stairway to ColumnStore
Indexes Level 8:
Optimizing Clustered
Columnstore Indexes
By Hugo Kornelis, 2016/03/16

The Series
This article is part of the Stairway Series: Stairway to
Columnstore Indexes

SQL Server 2012 and later offer a very different type of index
from the traditional b-tree, the in-memory columnstore index.
These indexes use a column-based storage model, as well as a
new 'batch mode' of query execution and can offer huge
performance increases for certain workloads. But how are they
built, how do they work, and why do they manage to have such a
dramatic impact on performance? In this stairway, Hugo Kornelis
explains all, with his usual mix of concise description and detailed
demonstration.

In Level 7, we looked at optimizing rowgroup elimination for a
nonclustered columnstore index. For a clustered columnstore
index, the same technique can be used but the steps and syntax
change a bit. This will be covered later – but first, let’s take a look
at another significant difference between nonclustered and
clustered columnstore indexes, which is that the former are read-
only (in SQL Server 2012 and 2014), whereas the latter allow
updates. This makes the index far more flexible and usable, but it
has a down side as well: no matter how much effort you put into
optimizing the index structure when building the index, it will not
remain that way. When you start to use clustered columnstore
indexes, you will also have to plan for index maintenance.

Reorganizing the index
For rowstore index maintenance, there are two options:
reorganize and rebuild, with reorganize being the more
lightweight option. For columnstore indexes, those same two
options are available, though they do not have the exact same
effect.

Reorganizing a clustered columnstore index can be useful after
doing a large data load that did not use bulk load, or after doing a
large update – in short, after any operation that causes a lot of
trickle inserts. Trickle inserts go into an open deltastore, which
will be closed when it reaches 1,048,576 rows. At that point,
without further action, it will wait for the background tuple mover
process to pick it up and compress it into columnstore format. But

Related Articles

Rebuilding and Reorganizing
Clustered Columnstore Indexes

Clustered Columnstore Indexes, as well
as “regular” indexes, support the Rebuild
and Reorganize oper...

Stairway to Columnstore
Indexes Level 12: Clustered or
Nonclustered?

The previous levels of this stairway
describe details, features, and limitations
of columnstore inde...

Clustered Columnstore Index
Gives "Unable to find index
entry" Error

The Clustered columnstore index
generates "unable to find index entry"
error and a memory dump after...

Stairway to Columnstore
Indexes Level 3: Building The
Columnstore

The performance increase columnstore
indexes grant when reading data from the
index is offset by the...

Stairway to Columnstore
Indexes Level 6: Updating and
Deleting Data in a Columnstore
Index

This level looks in detail at what happens
when we update or delete data from a
clustered columnstor...

Tags
clustered index
columnstore index
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Stay up to date:

Daily newsletters with brand new
articles, scripts, editorials and a
Question of the Day help you keep
on top of SQL Server.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=328527&zid=15220&t=1522616922&auth=5ac7d31927a579e1dd0f0c9d7b6fddfa
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fclustered%2bindex%2f139099%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522616919&auth=8d0a03bb66778d1d458e0a741b11ded2
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1769962.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/Hugo_Kornelis/264757/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/articles/Stairway+Series/138566/
http://www.sqlservercentral.com/blogs/db-newsfeed/2014/12/11/rebuilding-and-reorganizing-clustered-columnstore-indexes/
http://www.sqlservercentral.com/articles/157377/
http://www.sqlservercentral.com/articles/113752/
http://www.sqlservercentral.com/articles/126202/
http://www.sqlservercentral.com/articles/136174/
http://www.sqlservercentral.com/articles/clustered+index/
http://www.sqlservercentral.com/articles/ColumnStore+Index/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

that process is designed to use minimal resources, so it can be
slow – so if a lot of closed rowgroups are created in a short time,
it can fall behind. Until it catches up, you can experience
suboptimal performance from your columnstore index.

When you reorganize the index, you tell SQL Server to not wait
for the tuple mover, but immediately compress all closed
deltastore rowgroups for the specified index. This will have the
same effect as waiting for the tuple mover to kick in, but much
faster – and at the expense of using more resources.
Reorganizing a columnstore index is an online operation, which
means that the index can be used normally during the process.

Figure 8-1: Syntax for reorganizing a clustered columnstore
index

The most typical use case for reorganizing a columnstore index is
when you perform a data load process that you know will
generate lots of closed deltastore rowgroups. If you find that the
tuple mover sometimes does not catch up before the end of the
maintenance window, then you can use the syntax as shown in
figure 8-1 to force SQL Server to immediately compress all of
them. Beware of the impact that the additional resource usage
can have on other tasks running at the same time, though – test
to ensure that you are not causing issues for other jobs that need
to finish before the end of the maintenance window.

If your columnstore index is partitioned, you can choose to
reorganize only specific partitions by specifying the partition
number in the ALTER INDEX statement, or you can either specify

PARTITION = ALL or just leave out the partition specification

(both of which will result in all partitions being processed).

To see this process in action, run the code in listing 8-1, which is
almost identical to the code we used in level 5 (listing 5-3) to
demonstrate the tuple mover. The only difference is that I
replaced the WAITFOR command (used to wait for the tuple

mover to kick in) with an ALTER INDEX REORGANIZE

statement. The code first adds 1.1 million rows in 11 batches of
100,000 each, to ensure that at least one closed deltastore
rowgroup will be created. It then shows the rowgroup metadata,
reorganizes the index, and then queries the metadata again to
show the effect of reorganizing the index.

ALTER INDEX IndexName ON schema.TableName

REORGANIZE [PARTITION = [PartitionNumber

USE ContosoRetailDW;

GO

-- Add 1,100,000 rows, in 11 batches of 100,

INSERT dbo.FactOnlineSales2

 (DateKey, StoreKey, ProductKey, Pr

 CurrencyKey, CustomerKey, SalesOr

 SalesOrderLineNumber, SalesQuanti

 ReturnQuantity, ReturnAmount, Dis

 DiscountAmount, TotalCost, UnitCo

 ETLLoadID, LoadDate, UpdateDate)

SELECT TOP(100000)

 DateKey, StoreKey, ProductKey, Pr

 CurrencyKey, CustomerKey, SalesOr

 SalesOrderLineNumber, SalesQuanti

 ReturnQuantity, ReturnAmount, Dis

http://www.sqlservercentral.com/articles/Stairway+Series/133133/

Listing 8-1: Reorganizing a clustered columnstore index

As you can see from the partial results on my system (figure 8-2),
there is a new compressed rowgroup to replace the closed
rowgroup generated by the inserts, but all other rowgroups are
completely unaffected. (If you run this on your system, then the
rowgroup numbers and some other details may be different – as
in previous levels, this is because there is no way to force the
index build process to produce the exact same result when
conditions are different).

Zoom in | Open in new window

Figure 8-2: Effect of reorganizing a clustered columnstore
index

It is important to realize that this code to reorganize the index is
does not need to be run. If I had just waited a few minutes, the
tuple mover would have kicked in and done the same work in the
background. You only have to reorganize a clustered columnstore
index if there is a reason why you need the closed rowgroups to
be compressed immediately.

Rebuilding the index
As we saw in the level 5 and level 6, modifying data causes a
columnstore index to deteriorate in many ways. Bulk loading
results in rowgroups that can be much smaller than the maximum
size, deleted rows (which includes old versions of updated rows)
are marked as deleted but never actually deleted from the
rowgroups, and trickle inserts usually leave at least one rowgroup
open. Reorganizing the index does not help here, and in fact can
result in even more rowgroups at sub-optimal size. The only way

 DiscountAmount, TotalCost, UnitCo

 ETLLoadID, LoadDate, UpdateDate

FROM dbo.FactOnlineSales;

GO 11

-- Check the rowgroups metadata

SELECT OBJECT_NAME(rg.object_id) AS Ta

 i.name AS In

 i.type_desc AS In

 rg.partition_number,

 rg.row_group_id,

 rg.total_rows,

 rg.size_in_bytes,

 rg.deleted_rows,

 rg.[state],

 rg.state_description

FROM sys.column_store_row_groups AS rg

INNER JOIN sys.indexes AS i

 ON i.object_id = rg

 AND i.index_id = rg

WHERE i.name = N'CCI_FactOnlineSales2'

ORDER BY TableName, IndexName,

i i b

javascript:;
javascript:;
http://www.sqlservercentral.com/articles/Stairway+Series/133133/
http://www.sqlservercentral.com/articles/Stairway+Series/136174/

to remove all of this and clean up the entire index is to rebuild it.
Which, unfortunately, is an offline operation – meaning that SQL
Server will take an exclusive lock on the index, making the index
and hence the table inaccessible for the duration of the process.

To see the rebuild of a clustered columnstore index in action, run
the code in listing 8-2 to rebuild the clustered columnstore index
using only the default options. Before and after the rebuild, it
queries the rowgroup metadata; we have not seen this particular
query before but it is the same basic logic as the metadata query
used in listing 8-1 as well as several previous levels. The
difference is that it now presents aggregated numbers instead of
showing the individual rowgroups.

Listing 8-2: Rebuilding a clustered columnstore index

Rebuilding a columnstore is conceptually exactly the same as
rebuilding a rowstore index. SQL Server reads all data from the
existing columnstore index, builds a new columnstore index on
that data, then drops the old index. After that process, the index

USE ContosoRetailDW;

GO

-- Check the rowgroups metadata (aggregated

SELECT OBJECT_NAME(rg.object_id) AS Ta

 i.name AS In

 i.type_desc AS In

 rg.partition_number,

 rg.state_description,

 COUNT(*) AS Nu

 SUM(rg.total_rows) AS To

 SUM(rg.size_in_bytes) AS To

 SUM(rg.deleted_rows) AS To

FROM sys.column_store_row_groups AS rg

INNER JOIN sys.indexes AS i

 ON i.object_id = rg

 AND i.index_id = rg

WHERE i.name = N'CCI_FactOnlineSales2'

GROUP BY rg.object_id, i.name, i.type_desc

 rg.partition_number, rg.state_des

ORDER BY TableName, IndexName, rg.partitio

GO

-- Rebuild the index

ALTER INDEX CCI_FactOnlineSales2 ON dbo.Fact

GO

-- Check the rowgroups metadata again

SELECT OBJECT_NAME(rg.object_id) AS Ta

 i.name AS In

 i.type_desc AS In

 rg.partition_number,

 rg.state_description,

 COUNT(*) AS Nu

 SUM(rg.total_rows) AS To

 SUM(rg.size_in_bytes) AS To

 SUM(rg.deleted_rows) AS To

FROM sys.column_store_row_groups AS rg

i d i

will be as good as new, having all rowgroups (except the last)
completely full, all deleted rows really deleted, and all open and
closed rowgroups replaced by compressed rowgroups.

As you can see in figure 8-3, running this on my system reduced
the number of rowgroups from 22 to 18, and saved almost 21 MB
of storage (actually more, because the metadata query doesn’t
show the storage used for the open rowgroup). While it may
appear as if the number of rows has gone down, this is not
actually the case – just remember that the reported number of
rows in compressed rowgroups includes the rows that are
marked as deleted.

Zoom in | Open in new window

Figure 8-3: Effect of rebuilding a clustered columnstore
index

Now that we have seen an index rebuild with default options, let’s
take a look at the syntax as shown in figures 8-4 and 8-5, to see
what other options we have.

Figure 8-4: Syntax for rebuilding a complete clustered
columnstore index

Figure 8-5: Syntax for rebuilding one partition in a clustered
columnstore index

As you can see, there are quite a few different options, which is
why I split the syntax description over two diagrams. The options
in figure 8-4 are used to rebuild the entire index. You can make
this explicit by including the PARTITION = ALL specification, or

you can omit this part. The optional WITH clause allows you to

choose between either the normal columnstore compression, or
the archive columnstore compression that saves even more
space by using a more aggressive compression algorithm. For a
partitioned table, you can use the ON PARTITIONS clause to

force different compression types for individual partitions, by
specifying the partition number or a range of partition numbers. If
you rebuild without specifying a WITH clause, each partition will

retain its current compression type.

The second set of options, in figure 8-5, rebuilds only a single
partition of a clustered columnstore index and optionally changes
the compression type.

ALTER INDEX IndexName ON schema.TableName

REBUILD [PARTITION = ALL]

 [WITH ([DATA_COMPRESSION = { COLUM

 [ON PARTITIONS (

 [, ...]

 [, MAXDOP = number]

)];

ALTER INDEX IndexName ON schema.TableName

REBUILD PARTITION = number

 [WITH ([DATA_COMPRESSION = { COLUM

 [, MAXDOP = number]

)];

javascript:;
javascript:;

Both versions allow you to specify the degree of parallelism.
When not specified, the rebuild process, just like the initial build,
will use all the nodes it can get.

Archival compression

The COLUMNSTORE_ARCHIVE keyword seen in the syntax for

rebuilding a clustered columnstore index is used to invoke
archival expression. As already mentioned briefly in level 2, this is
a more aggressive compression algorithm that reduces the on-
disk size of the data even more than regular columnstore
expression, but at the expense of using more CPU, both when
rebuilding the columnstore index and when retrieving data from it.
You would normally use this compression type only on partitioned
tables, and only on the partitions that contain historical data –
data that is so old that it is queried very infrequently. For that type
of data, the overhead of performing the extra decompression
when retrieving the data will be outweighed by the disk space
saving. But for data that is still queried on a regular basis,
standard columnstore compression is the recommended level.

The code in listing 8-3 once more rebuilds the entire clustered
columnstore index, this time choosing archival compression, and
then looks at the space taken. Since the sample sales table used
for this series is not partitioned, I can only choose a single
compression type for the whole table.

Listing 8-3: Using archival compression

As can be seen in figure 8-6, the total on-disk space has been
reduced from over 163 MB (see figure 8-3) to just over 82 MB – a
50% reduction over the already impressive regular columnstore
compression.

USE ContosoRetailDW;

GO

-- Rebuild the index, applying archival comp

ALTER INDEX CCI_FactOnlineSales2 ON dbo.Fact

REBUILD WITH (DATA_COMPRESSION = COLUMNSTORE

GO

-- Check the rowgroups metadata again

SELECT OBJECT_NAME(rg.object_id) AS Ta

 i.name AS In

 i.type_desc AS In

 rg.partition_number,

 rg.state_description,

 COUNT(*) AS Nu

 SUM(rg.total_rows) AS To

 SUM(rg.size_in_bytes) AS To

 SUM(rg.deleted_rows) AS To

FROM sys.column_store_row_groups AS rg

INNER JOIN sys.indexes AS i

 ON i.object_id = rg

 AND i.index_id = rg

WHERE i.name = N'CCI_FactOnlineSales2'

GROUP BY rg.object_id, i.name, i.type_desc

 rg.partition_number, rg.state_des

ORDER BY TableName, IndexName, rg.partitio

GO

http://www.sqlservercentral.com/articles/Stairway+Series/124326/

Zoom in | Open in new window

Figure 8-6: Effect of archival compression

I want to stress that the above is for the sake of demonstration
only, and not a recommended practice. If you want to use archival
compression, choose a partitioning scheme that separates the
rarely used data from the frequently used data, and use archival
compression only for the partitions with little usage. There are
only very few scenarios where archival compression for an entire
table is the correct choice.

Preordering the data
So far, we have not looked at the effectiveness of rowgroup
elimination for the clustered columnstore index. But chances are
that this is pretty abysmal. Looking back over the previous levels,
we have created the FactOnlineSales2 table as a heap, which is
always completely unordered. We then built a clustered
columnstore index directly on top of that, so even that first version
of the index was unlikely to have any correlation between the
data values and the rowgroups. And then we have added rows,
deleted rows, updated rows, and rebuilt the index twice without
ever considering order at all. With all that, I would be very
surprised if there is even a single column that will ever qualify for
rowgroup elimination.

USE ContosoRetailDW;

GO

SELECT p.partition_number,

 s.segment_id,

 MAX(s.row_count) AS row_count,

 MAX(CASE WHEN c.name = N'OnlineSa

 THEN s.min_data_id END)

 MAX(CASE WHEN c.name = N'OnlineSa

 THEN s.max_data_id END)

 MAX(CASE WHEN c.name = N'StoreKey

 THEN s.min_data_id END)

 MAX(CASE WHEN c.name = N'StoreKey

 THEN s.max_data_id END)

 MAX(CASE WHEN c.name = N'ProductK

 THEN s.min_data_id END)

 MAX(CASE WHEN c.name = N'ProductK

 THEN s.max_data_id END)

FROM sys.column_store_segments

INNER JOIN sys.partitions

 ON p.hobt_id

INNER JOIN sys.indexes

 ON i.object_id

 AND i.index_id

LEFT JOIN sys.index_columns

 ON ic.object_id

 AND ic.index_id

 AND ic.index_column_id

LEFT JOIN sys.columns

 ON c.object_id

 AND c.column_id

javascript:;
javascript:;

