
Thank this author by sharing: 0

2012/03/16
BLOG

2014/07/21

ARTICLE

2013/07/30

BLOG

2016/12/27

ARTICLE

2016/03/11

ARTICLE

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Stairway to Columnstore
Indexes Level 1: A First
Look At Columnstore
Indexes
By Hugo Kornelis, 2016/05/30 (first published: 2015/02/25)

The Series
This article is part of the Stairway Series: Stairway to
Columnstore Indexes

SQL Server 2012 and later offer a very different type of index
from the traditional b-tree, the in-memory columnstore index.
These indexes use a column-based storage model, as well as a
new 'batch mode' of query execution and can offer huge
performance increases for certain workloads. But how are they
built, how do they work, and why do they manage to have such a
dramatic impact on performance? In this stairway, Hugo Kornelis
explains all, with his usual mix of concise description and detailed
demonstration.

One of the most exciting new features in SQL Server 2012 was
the introduction of columnstore indexes, or, as they are officially
called, “in-memory columnstore indexes”. In SQL Server 2014,
Microsoft made this great feature even better. A lot better!

So what is it all about? Most of the time, columnstore indexes are
described as a feature for data warehousing and reporting. And
that is indeed the environment where you are most likely to find a
good use for this new type of index. But even in OLTP databases,
you might have a few reports that are slow, because they draw
from very large tables. With proper planning and care, even those
reports can benefit from columnstore indexes.

An important keyword in the previous paragraph is “very large”.
Columnstore indexes are intended to be used with large tables.
There is no hard minimum size, but as a rule of thumb, I would
say that you need at least tens of millions of rows in a single table
to get real benefit from columnstore indexes.

When talking about columnstore indexes, I am actually talking
about a combination of two closely related new features. One is a
different architecture for index storage, storing data by column
instead of by row. In the next level, we will look at this
architecture in more detail, and we will see how this reduces the
storage size for large tables. The second new feature is “batch
mode”, a new mode of query execution which is optimized for
modern hardware. Batch mode will be covered later in the series.

Related Articles

Columnstore Indexs

Columnstore Indexes for Fast DW The
SQL Server 11.0 release (2012)
introduces a new data warehouse...

Columnstore Index Changes in
SQL Server 2014

SQL Server 2012 introduced columnstore
indexes, which can immensely improve
the performance of OLAP ...

SQL Server 2014: Columnstore
Index improvements

In SQL Server 2012, a new feature was
added called Columnstore Indexes that
resulted in huge query p...

Internal Query Processor Error
with ColumnStore Indexes

SQL Server 2016 does not allow
computed columns to co exist with
columnstore indexes and clustered b...

Stairway to ColumnStore
Indexes Level 7: Optimizing
Nonclustered Columnstore
Indexes

In this level, we will focus on optimization
techniques to apply while building the
nonclustered col...

Tags
columnstore index
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=355875&zid=15220&t=1522616677&auth=f9e19f4dcf7f0524beab6ceb32ec0bcd
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f121633%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522616677&auth=d1df0a2ec4267069c61c82762ff6eda2
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1653689.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/Hugo_Kornelis/264757/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/blogs/microsoft-business-intelligence-and-data-warehousing/2012/03/15/columnstore-indexs/
http://www.sqlservercentral.com/articles/112059/
http://www.sqlservercentral.com/blogs/jamesserra/2013/07/30/sql-server-2014-columnstore-index-improvements/
http://www.sqlservercentral.com/articles/149879/
http://www.sqlservercentral.com/articles/138566/
http://www.sqlservercentral.com/articles/ColumnStore+Index/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

For the demos in this series, I will use the ContosoRetailDW

demo database, created by Microsoft, that can be downloaded
from http://www.microsoft.com/en-us/download/details.aspx?
id=18279. This is a 626MB download of a database backup,
which restores to a 1.2GB database. This is a bit small for real
columnstore use, but large enough to demonstrate the features.

A baseline
The ContosoRetailDW database does not include any

columnstore indexes. This is actually not a bad thing. To see the
benefit of columnstore indexes, I want to compare performance of
the same query with and without a columnstore index. So the first
thing to do, before creating a columnstore index, is to test
performance of the database as-is. I wrote a sample query (see
listing 1) that can be considered typical for a query from an
information worker in a BI role. It shows an overview of sales,
broken down by quarter, for all products in the “Contoso” brand.

Listing 1: A typical BI query

On my laptop, the query in listing 1 takes, on average, about 6.27
seconds to complete when the required data is already in cache.
If the data has to be read from disk, the execution time goes up
8.11 seconds. Since the FactOnlineSales table has over 12.5

million rows and this query has to scan the entire clustered index,
which is actually not bad at all. But if you spend all day doing
these queries, the sluggish response will quickly become a
nuisance. And you can probably easily imagine how the
performance would be for databases that are 10 times or even
100 times bigger.

Note that these execution times will vary based on the hardware
used. If you repeat these tests on a high end server, all queries
will run much faster. On a laptop you bought as a bargain three
years ago, they will take more time. But you should see big
savings after creating a columnstore index on all of those
systems.

Creating the index
Columnstore indexes come in two flavors: clustered and
nonclustered. There are many similarities between the two, but

WITH ContosoProducts

AS (SELECT *

 FROM dbo.DimProduct

 WHERE BrandName = 'C

SELECT cp.ProductName,

 dd.CalendarQuarter,

 COUNT(fos.SalesOrderNumber) AS Nu

 SUM(fos.SalesQuantity) AS Qu

FROM dbo.FactOnlineSales AS fo

INNER JOIN dbo.DimDate AS dd

 ON dd.Datekey = fo

INNER JOIN ContosoProducts AS cp

 ON cp.ProductKey = fo

GROUP BY cp.ProductName,

 dd.CalendarQuarter

ORDER BY cp.ProductName,

 dd.CalendarQuarter;

http://www.microsoft.com/en-us/download/details.aspx?id=18279

also a lot of differences. One such difference is that in SQL
Server 2012, only nonclustered columnstore indexes are
available. The clustered version has been added in SQL Server
2014. For this first example, we will create a nonclustered
columnstore index, so that readers without access to SQL Server
2014 can follow along.

Listing 2: Creating the nonclustered columnstore index

We will take a closer look at the syntax for creating nonclustered
indexes later. Those who are used to minimizing the amount of
columns in an index may be shocked to see all the table’s
columns included in the list above. This, too, will be explained
later. For now, please just accept that columnstore indexes have
their own rules and guidelines.

Executing this code will take some time (I had to wait
approximately 43 seconds for it to complete on my laptop). But
this is a one-time action that in a real datawarehouse would
typically be done during the nightly load. Once the index is
created, it can be used by SQL Server to increase the speed of
many queries.

What did we gain?
When I now run the code from listing 1 again, I get the same
results as before, but the results are returned almost
instantaneously. The query now finishes in about 0.34 seconds,
more than 18 times faster than before I added the columnstore
index. Of course, even with columnstore indexes the query will
run more slowly if data has to be read from disk. With an empty
cache, the query takes 1.54 seconds, still more than five times
faster than the 8.11 seconds we saw before.

Tip

The only way to evaluate how useful a columnstore index is
for a specific database is to compare performance with and

CREATE NONCLUSTERED COLUMNSTORE INDEX NCI_Fa

ON dbo.FactOnlineSales

 (OnlineSalesKey,

 DateKey,

 StoreKey,

 ProductKey,

 PromotionKey,

 CurrencyKey,

 CustomerKey,

 SalesOrderNumber,

 SalesOrderLineNumber,

 SalesQuantity,

 SalesAmount,

 ReturnQuantity,

 ReturnAmount,

 DiscountQuantity,

 DiscountAmount,

 TotalCost,

 UnitCost,

 UnitPrice,

 ETLLoadID,

 LoadDate,

 UpdateDate);

without the columnstore index. But you have seen that it
takes a lot of time to build a columnstore index, so you may
be hesitant to drop the index and then have to recreate it
again, just for a test. Luckily, there is a better option: adding
the query hint
OPTION(IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX)

to a query will instruct the optimizer to execute the query as if
the nonclustered columnstore index does not exist. This hint
works for nonclustered columnstore indexes in both SQL
Server 2012 and SQL Server 2014. Unfortunately, there is no
similar option for clustered columnstore indexes in SQL
Server 2014. If you want to do performance tests for the
clustered version, dropping and rebuilding the index in
between tests is the only way to go unless you want to
maintain two tables, one with the clustered columnstore
index and one without.

Shortcomings
The performance gains from nonclustered columnstore indexes in
SQL Server 2012 can be impressive, but you need to be very
careful when writing your queries. Almost every query against a
table with a columnstore index would find some benefit, but you
may have to code around many limitations in order to get the full
potential. One such limitation is related to outer joins.

If the information worker who wrote the query in listing 1 decides
that all products of the Contoso brand need to be included in the
results, even if they were never sold, the obvious change would
be to change the INNER JOIN to a RIGHT OUTER JOIN, as

shown in listing 3.

Listing 3: Introducing an outer join

Without a columnstore index (or with the
IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX hint to

simulate that situation), the query runs in 6.71 seconds when the
data is already in cache. Changing an INNER JOIN to a RIGHT

(OUTER) JOIN introduces some extra overhead in the execution

plan, causing the query execution to take another 0.44 seconds,
an increase of approximately 7%.

When running this query without a hint the optimizer will
immediately pick a plan that uses the nonclustered columnstore

WITH ContosoProducts

AS (SELECT *

 FROM dbo.DimProduct

 WHERE BrandName = 'C

SELECT cp.ProductName,

 dd.CalendarQuarter,

 COUNT(fos.SalesOrderNumber) AS Nu

 SUM(fos.SalesQuantity) AS Qu

FROM dbo.FactOnlineSales AS fo

INNER JOIN dbo.DimDate AS dd

 ON dd.Datekey = fo

RIGHT JOIN ContosoProducts AS cp

 ON cp.ProductKey = fo

GROUP BY cp.ProductName,

 dd.CalendarQuarter

ORDER BY cp.ProductName,

 dd.CalendarQuarter;

index on my SQL Server 2012 instance, and this results (as
expected) in a faster execution – approximately 4.24 seconds.
This is of course still better than the 6.71 seconds without the
columnstore index, but it pales in comparison with the 0.34
seconds I measured for the original query with an INNER JOIN.

So why is the performance impact of changing an inner join to an
outer join so much bigger when the query is using a columnstore
index?

Batch mode
The reason for the big performance difference between inner and
outer joins is that the speed gain of columnstore indexes builds
on two components. The obvious one is the index itself. In
subsequent levels of this stairway you will see how the structures
used to implement columnstore indexes result in a massive
reduction of I/O.

But much of the secret sauce of the better performance with
columnstore indexes is achieved by using a new mode of query
execution. This so-called “batch mode execution” represents a
completely different way of executing queries, designed to
remove a lot of overhead and optimized to take optimal
advantage of the characteristics of modern hardware. But the
SQL Server 2012 implementation of batch mode was very limited.
Only a handful of operators are available in batch mode in SQL
Server 2012. As soon as a query requires the use of one of the
unavailable operators, all or most of the query will fall back into
the traditional row mode execution. An outer join is but one of
many language elements that will cause this fallback to row
mode, where you still get the performance benefit that results
from the I/O reduction of a columnstore index, but not the
additional performance benefit of batch mode.

If the performance benefit you experience is less than you were
hoping for, inability to use batch mode may be the cause. The
quickest way to verify the mode being used is to bring up the
graphical execution plan for the query in SQL Server
Management Studio, then check the “Estimated Execution Mode”
and “Actual Execution Mode” properties of the operators that
process the most data. See Figure 1-1 for an example of a query
running in batch mode.

Zoom in | Open in new window

Figure 1-1: Execution plan showing batch mode

Later in this series, we will cover batch mode in more detail, and
will discuss all the limitations. We will look at ways to rewrite
queries to work around the limitations and maximize the benefit of
batch mode execution.

If you have followed along on your own test server with the
queries I used for comparing performance, you should have seen
similar performance differences – if you are running on SQL
Server 2012. But if you try the same on SQL Server 2014, you

javascript:;
javascript:;

Thank this author by sharing: 0

will find very different performance effects. A very big
improvement that Microsoft made after SQL Server 2012 was
released was to add batch mode support for many more
operators, so that queries that read data from a columnstore
index are far more likely to run in batch mode. The query with the
outer join in listing 3 is a great example where you can see this
difference – on SQL Server 2012 the outer join will cause it to fall
back to row mode execution, but in SQL Server 2014 it will run in
batch mode.

What benefit can you expect?

There is no simple way to predict the performance benefit
when you create a columnstore index. The only reliable way
is to compare the performance of the queries that are
typically used on your real database, or on a test database
that mimics size, specification, and data distribution of your
real database as close as possible.

For queries that are able to run in batch mode, I have seen
performance benefits ranging from just five times faster to
over seventy (70!) times faster after adding a columnstore
index. For queries that run in row mode, the performance
benefit is always less, typically ranging from a 50% increase
in performance to up to twenty times faster.

Conclusion
The performance benefit available by using columnstore indexes
is caused by two major factors. One is the I/O savings caused by
the new index structure, the other is batch mode execution. With
SQL Server 2012, batch mode execution was unfortunately
limited to only a handful of operators, causing many common
query constructs to force a query back into row mode execution,
forfeiting the performance benefit of batch mode. Most of these
limitations have been lifted in SQL Server 2014.

In the rest of this stairway series, I will explain more about
column-oriented storage and batch execution mode; I will
demonstrate how to create and use columnstore indexes, what
the limitations are, and how to work around them; I will discuss
the improvements made in SQL Server 2014, including the new
clustered columnstore index; and give tips and best practices for
getting the most out of columnstore indexes in both versions.

This article is part of the Stairway to Columnstore Indexes
Stairway

Sign up to our RSS feed and get notified as soon as we publish a
new level in the Stairway!

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Total article views: 13805 | Views in the last 30 days: 84

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/Xml/Rss/stairways
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1653689.aspx
javascript:;

