
Thank this author by sharing: 1

2007/10/02
ARTICLE

2009/03/27

FORUM

2012/04/10
FORUM

2011/10/10

FORUM

2010/08/10
FORUM

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

SQL Server Indexing Best
Practices: Stairway to SQL
Server Indexes Level 15
By David Durant, 2012/03/28

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

In this article we make recommendations: fourteen guidelines
drawn from information presented throughout this Stairway.
These guidelines will help you create the best indexing scheme
for your database.

The format was taken from Framework Design Guidelines;
Krzysztof Cwalina and Brad Abrams’ excellent work on standards
for .Net application development, published by Addison Wesley.
Each recommendation is specified by the word(s) do, consider,
avoid, and do not, which have the following meanings.

Do: guidelines should always be followed.
Consider: guidelines should generally be followed; but if you
fully understand both the reason behind the guideline and your
reason for not following it; then you should feel free to deviate
from the guideline.
Avoid: is the opposite of consider. In general the guidelines
suggest something that should not be done, but if you
completely understand why it should not be done, and you
understand your reason for doing it anyway; then do it.
Do not is the stronger version of avoid, and indicates
something that should never be done. Like do guidelines, do
not guidelines should always be followed.

Guidelines

Do Know your Application / Users

The primary purpose of an index is to improve the
performance of your application’s data gathering and data
manipulation operations. Until you know what those
operations are, you have no hope of improving them.

Related Articles

Index Creation Guidelines

Index Creation Guidelines for SQL Server
can be pretty sparse. Usually there are a
couple, clustered...

basic guidelines on creating
Indexes

basic guidelines on creating Indexes

clustered index

clustered index

cluster index or non cluster
index

cluster index or non cluster index

Non-Cluster Index issue

Non-Cluster Index issue

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=355675&zid=15220&t=1522616424&auth=af5431bf73b305263f328d8266528bbb
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72447%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=328526&zid=15491&t=1522616425&auth=8e16b22c4496ef21d69eb3763686ab9c
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1139626.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/articles/1389/
http://www.sqlservercentral.com/Forums/FindPost684771.aspx
http://www.sqlservercentral.com/Forums/FindPost484150.aspx
http://www.sqlservercentral.com/Forums/FindPost406500.aspx
http://www.sqlservercentral.com/Forums/FindPost966626.aspx
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

It’s nice to be involved in the application from the
beginning; participating in the design and development.
But this is the exception not the rule. If you are inheriting
an already implemented database and application, take
two approaches to understanding what you have inherited;
the outside approach and the inside approach.

The outside approach consists of learning from the users;
talking with them, watching them use the application,
reading any user oriented documentation and instructions,
and reviewing current forms and reports.

The inside approach involves examining the application
itself; both the definition of the application and the
execution of the application. Tools such as Activity
Monitor, Profiler, the sys.dm_db_index usage_stats
dynamic management view, and the
sys.dm_db_missing_index_XXX family of dynamic
management views provide information about popular
queries, long running queries, popular indexes, unused
indexes, and indexes that should exist but do not.

Examining the source location of popular or poorly
performing queries, such as Reporting Services
templates, T-SQL job steps, T-SQL tasks in SSIS
applications, and stored procedures can yield information
about why the statements are important to the application
and, therefore, should be well optimized.

Armed with this information, you can make good decisions
regarding which indexes are beneficial, and which are not.

Do Not Over Index

Too many indexes are as bad a problem as too few
indexes. There is no magic ‘best number of indexes’ for a
table. Every table is different. However, once you have
indexed the primary key, any candidate keys, and the
appropriate foreign keys; any other potential index
requires careful analysis on your part before you add it to
your database.

Do Understand that: Same Database + Different
Situation = Different Indexing

Whether it is daytime processing versus off-hours
processing; or transactional processing run against an
OLTP database versus report processing run against a
replicated copy of that same database; different situations
require different indexing.

A database that receives massive infusions of new data
each night should have fewer indexes during that infusion
than during normal processing hours. A volatile database
with limited querying requirements needs fewer indexes
than an updated-once-each-night reporting database that
handles complex report generation.

Do Have a Primary Key on Every Table

Although primary keys are not required by SQL Server, a
table without a primary key is dangerous thing in a
transactional or reporting database, as its rows are not
guaranteed to be unique. If duplicate rows are allowed,
they will happen; and you will never know whether the
same instance of a subject was entered twice, or whether

you have separate instances with insufficient information
to distinguish one from the other.

Although not required by SQL Server, primary keys are a
cornerstone of relation theory, the basic building block of
all relational systems. Without primary key constraints,
and their associated UNIQUE indexes, relational
operations will yield unexpected results and poor
performance.

In addition, many client side development tools and
components need your tables to have primary keys. For
example, both the ADO.Net SqlCommandBuilder
component and Visual Studio’s Entity Data Modeler
depend upon targeted database tables having primary key
constraints. Remember that the name of the primary key
constraint becomes the name of the index that is
automatically created to enforce that constraint.

Consider Having a Clustered Index on Every Table

This Stairway’s Level 3 – Clustered Indexes covered the
benefits of having a clustered index on a table; that is, of
having the table be a clustered index rather than be a
heap. The main benefit is the simple fact that the user
community as a whole tends to view a table’s data in a
certain default sequence; hence the advantage of
maintaining the rows in that sequence.

If you follow these recommendations laid out in this Level,
every table will have a primary key. Therefore, every table
will have at least one index, and probably more. Thus,
making one of those indexes the clustered index will not
increase the number of indexes, but it will just give your
table a better structure than that of a heap.

When deciding on the clustered index key, remember the
guidelines specified in Level 6 – Bookmarks: a clustered
index key should be unique, short, and non-volatile.

Consider Using a Foreign Key in the Search Key of
the Clustered Index

Using a foreign key as the left most column(s) of the
clustered index key will cluster child information around a
common parent; which is a typical processing
requirement. Your credit card charges are associated with
your card; my charges are associated with my card. That
relationship is stronger that the one that associates a
charge with the merchant who sold the item, or with the
financial institution that is processing the charge. Card
number is the foreign key that belongs in the Charge
table’s clustered index’s key; not merchant number or
bank number. By making card number the left most
column of the clustered index, all charges for a single
cardholder will be clustered together on the same data
page(s).

Add additional non-volatile column(s) to the key, as
necessary, to ensure uniqueness of the clustered index
key.

Consider Having Included Columns in your
Indexes

Using a foreign key as the left most column(s) of the
clustered index key will cluster child information around a
common parent; which is a typical processing
requirement. Your credit card charges are associated with
your card; my charges are associated with my card. That
relationship is stronger that the one that associates a
charge with the merchant who sold the item, or with the
financial institution that is processing the charge. Card
number is the foreign key that belongs in the Charge
table’s clustered index’s key; not merchant number or
bank number. By making card number the left most
column of the clustered index, all charges for a single
cardholder will be clustered together on the same data
page(s).

Add additional non-volatile column(s) to the key, as
necessary, to ensure uniqueness of the clustered index
key.

Avoid Nonclustered, Unfiltered Indexes on
Columns that have few Distinct Values

The old cliché is “Never index the Gender column”. A
typical page of the table will have half female rows and
half male rows, and will be accessed whether the request
is for female rows or for male rows. A table scan will
always be the best decision for any WHERE GENDER = …

query; therefore, such an index will never be of benefit to
the optimizer.

Consider Creating a Filtered Index for Columns
that Have a Dominate Value

If a large percentage of the rows have the same value for
a particular column, or are null, create a filtered index that
on that column. Those queries searching for rows of the
rarer values will use this small, efficient index; queries
looking for the rows of the common value will do a table
scan. And SQL Server can easily determine which is
which.

Consider Specifying Fill Factor Values that
Anticipate Future Size Requirements

If a relatively new clustered index table contains one
month’s worth of rows and will be allowed to grow until it
contains one year’s worth of rows, rebuild the index with a
FILLFACTOR value of 7 or 8 percent. This will cause the
table to consume the same number of pages now as a
year from now. Potential problems with space
requirements and processing performance, such as the
number of I/Os required for a table scan, will appear
sooner rather than later.

Consider Specifying Fill Factor Values that Reflect
the Table’s Steady-state Page Fragmentation Value

If a table has already reached its planned maximum size,
the previous guideline does not apply. In this case, the fill
factor that will result from the table’s normal activity should
be specified to begin with. As was mentioned in Level 11 –
Index Fragmentation, for a typical transaction table that
has continual inserting but only periodic deleting, this

value is 75. For a table that has equal amounts of insert
and delete activity, 90 to 95 would be a good choice.

Do Create a Table’s Clustered Index Before
Creating its Nonclustered Indexes

A corollary to this guideline is: Do drop a table’s
nonclustered indexes before dropping its clustered index.
Doing otherwise will cause the nonclustered indexes to be
rebuilt unnecessarily. Transitioning a table between being
a heap and being a clustered index always causes the
table’s non-clustered indexes to be rebuilt because the
contents of the bookmarks must change from row
identifiers to clustered index keys.

Do Plan Your Index Defragmenting and Rebuilding
Based Upon Usage

If an indexed is frequently scanned, then, as mentioned in
Level 11 – Index Fragmentation, the external
fragmentation of that index is important; for it has a major
impact on the effort required to scan all or some of the leaf
level of an index. If this is the case, consider reorganizing
the index when external fragmentation reaches ten
percent, and consider rebuilding the index when external
fragmentation reaches thirty percent. For most
transactional environments, the values mentioned above
represent the point at which the benefit of performing the
reorganization or rebuild of the index outweighs the cost of
doing it.

However, if an index is being searched for a specific key
value, then external fragmentation has little or no impact
on performance. The IO required to traverse one page at
each level from the root page to the leaf level, will be the
same regardless of external fragmentation. In this
situation, reorganizing or rebuilding the index will have
little impact on performance.

Do Update Index Statistics on a Regular Basis

The key word here is “regular”, because only by knowing
what your applications are doing can you determine when
statistics need to be updated. Level 14 – Index Statistics
illustrates why some statistics become outdated faster
than others.

Conclusion
These guidelines evolved from the experiences of many
developers working with SQL Server for many years in a variety
of environments. Following them can help you create the best
possible indexing for your database.

This article is part of the Stairway to SQL Server Indexes
Stairway

Sign up to our RSS feed and get notified as soon as we publish a
new level in the Stairway!

Keep up to date with SQL Server - new articles every
day.

your@email.com Sign up

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Xml/Rss/stairways

Thank this author by sharing: 1

 Rate this Join the discussion Add to briefcase

Total article views: 17154 | Views in the last 30 days: 18

javascript:;
http://www.sqlservercentral.com/Forums/FindPost1139626.aspx
javascript:;

