
Thank this author by sharing: 0

2013/03/28
FORUM

2017/06/23

ARTICLE

2015/06/05

BLOG

2010/11/27
FORUM

2010/02/02

ARTICLE

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Keep up to date -
daily newsletter:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Reading Query Plans:
Stairway to SQL Server
Indexes Level 9
By David Durant, 2011/10/05

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

Throughout this Stairway, we often state that a certain query
executes in a certain way; and we cite the generated query plan
to support our statement. Management Studio’s display of
estimated and actual query plans can help you determine the
benefit, or lack thereof, of your indexes. Thus, the purpose of this
level is to give you sufficient understanding of query plans that
you can:

Verify our assertions as you read this Stairway.
Determine if your indexes are benefiting your queries.

There are many articles on reading query plans, including several
in the MSDN library. It is not our intention here to extend or
replace them. In fact, we will provide links / references to many of
them in this level. A good place to start is Displaying Graphical
Execution Plans (http://msdn.microsoft.com/en-
us/library/ms178071.aspx). Other useful resources include Grant
Fritchey's book, SQL Server Execution Plans (available for free in
eBook form), and Fabiano Amorim's series of Simple-Talk articles
about the various operators found in your query plan output
(http://www.simple-talk.com/author/fabiano-amorim/).

Graphical Query Plans
A query plan is the set of instructions that SQL Server follows to
execute a query. SQL Server Management Studio will display a
query plan for you in text, graphical, or XML format. For instance,
consider the following simple query:

Related Articles

Indexes with Include

How does SQL select an index when you
have included columns

Indexes with Included Columns:
Stairway to SQL Server Indexes
Level 5

Included columns enable nonclustered
indexes to become covering indexes for a
variety of queries, im...

SQL Server – Capture Execution
Plan of a Currently Running
Query/Process SPID

DBAs most often face scenarios where
they need to capture graphical execution
plan of a query curren...

script included index

index include script

Covering Index using Included
Columns

This article from Josef Richberg details
the benefits of included columns for use in
creating a cove...

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

SELECT LastName, FirstName, MiddleName, Titl

FROM Person.Contact

WHERE Suffix = 'Jr.'

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=355675&zid=15220&t=1522616212&auth=f08369b9cfb0ebca3ec82956b9a9e5b6
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72441%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522616209&auth=477047355f579d1de336b364489d04cf
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1085228.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://msdn.microsoft.com/en-us/library/ms178071.aspx
http://www.sqlservercentral.com/articles/books/65831/
http://www.sqlservercentral.com/Forums/FindPost742705.aspx
http://www.sqlservercentral.com/articles/72276/
http://www.sqlservercentral.com/blogs/sqlserverzestcom-sql-in-simple-style/2015/06/05/sql-server-capture-execution-plan-of-a-currently-running-queryprocess-spid/
http://www.sqlservercentral.com/Forums/FindPost1026987.aspx
http://www.sqlservercentral.com/articles/69179/
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

The plan for this query could be viewed as shown in Figure 1.

Zoom in | Open in new window

Figure 1 – Actual query plan in graphical format

Alternatively, it could be viewed as text:

|--Sort(ORDER BY:([AdventureWorks].[Person].[Contact].[Title]
ASC))

|--Clustered Index
Scan(OBJECT:([AdventureWorks].[Person].[Contact].
[PK_Contact_ContactID]),
WHERE:([AdventureWorks].[Person].[Contact].[Suffix]=N'Jr.'))

Or as an XML document, starting like this:

Zoom in | Open in new window

The display of query plans can be requested as follows:

To request the graphical query plan, use Management Studio’s
SQL Editor Toolbar, which has both a “Show Estimated
Execution Plan” and an “Include Actual Execution Plan”
button. The “Show Estimated Execution Plan” option displays
the query plan graph for the selected TSQL code immediately,
without executing the query. The “Include Actual Execution
Plan” button is a switch, and once you have selected this
option, every query batch that you execute will show you the
query plan graph in a new tab, along with the results and the
messages. This option can be seen in Figure 1.
To request the text query plan, use the SET
SHOWPLAN_TEXT ON statement. Turning the text version
on will turn the graphical version off and will not execute any of
your queries.
To view the XML version, right click within the graphical
version and chose “Show Execution Plan XML” from the
context menu.

For the remainder of this level, we focus on the graphical view, as
it normally provides the fastest understanding of the plan. For
query plans, one picture is usually better than a thousand words.

Reading Graphical Query Plans
Graphical query plans are usually read from right to left; with the
right most icon(s) representing the first step in a data gathering
stream. This is normally the accessing of a heap or index. You
will not see the word table used here; rather, you will see either

ORDER BY Title

javascript:;
javascript:;
javascript:;
javascript:;

clustered index scan or heap scan. This is the first place to look
to see which indexes, if any, are being used.

Each icon in a graphical query plan represents an operation. For
additional information on the possible icons, see Graphical
Execution Plan Icons at http://msdn.microsoft.com/en-
us/library/ms175913.aspx

The arrows that connect the operations represent the rows,
streaming out of one operation and into the next.

Placing your mouse over on icon or arrow will cause additional
information to be displayed.

Do not think of an operation as a step, for this implies that one
operation must be completed before the next operation can
begin. This is not necessarily true. For instance, when a
WHERE clause is evaluated, that is, when a Filter operation is
performed, rows are evaluated one at a time; not all at once. A
row can move to the next operation before a subsequent row
arrives at the filter operation. A Sort operation, on the other
hand, must be completed in its entirety before the first row can
move to the next operation.

Using Some Additional Information
A graphical query plan displays two pieces of potentially helpful
information that are not part of the plan itself; suggested indexes
and the relative cost of each operation.

In the example shown above, the suggested index, shown in
green and truncated by space requirements, recommends a
nonclustered index on Contact table’s Suffix column; with
included columns of Title, FirstName, MiddleName, and
LastName.

The relative cost of each operation for this plan informs us that
the sort operation was 5% of the total cost, while the table scan
was 95% of the work. Thus, if we want to improve the
performance of this query, we should address the table scan, not
the sort; which is why an index was suggested. If we create the
recommended index, like this:

And then rerun the query, our reads drop from 569 to 3; and the
new query plan, shown below, shows why.

Zoom in | Open in new window

The new nonclustered index, with its index key of Suffix, has the
“WHERE Suffix = 'Jr.'“ entries clustered together; hence, the
reduction in IO required to retrieve the data. As a consequence,
the sort operation, which is the same sort operation that it was in
the previous plan, now represents over 75% of the total cost of
the query, instead of the mere 5% of the cost that it had been.

CREATE NONCLUSTERED INDEX IX_Suffix ON Perso

(

Suffix

)

INCLUDE (Title, FirstName, MiddleName, Las

http://msdn.microsoft.com/en-us/library/ms175913.aspx
javascript:;
javascript:;

Thus the original plan required 75 / 5 = 15 times the amount of
work to gather the same information as the current plan.

Since our WHERE clause includes only an equality operator, we
can improve our index even more by moving the Title column into
the index key, like so:

Now, the needed entries are still clustered together within the
index, and within each cluster they are in the requested
sequence; as indicated by the new query plan, shown in Figure 2.

Zoom in | Open in new window

Figure 2- Query Plan after rebuilding the nonclustered index

The plan now shows that the sort operation is no longer needed.
At this point, we can drop our highly beneficial covering index.
This restores the Contact table to the way it was when we
started; which is the state we want it to be in as we enter our next
topic.

Viewing Parallel Streams
If two streams of rows can be processed in parallel, they will
appear above and below each other in the graphical display. The
relative width of the arrows indicates how many rows are being
processed through each stream.

For instance, the following join, extends the previous query to
include sales information:

The query plan is shown in Figure 3.

IF EXISTS (SELECT * FROM sys.indexes

WHERE OBJECT_ID = OBJECT_ID(N'Person.Contac

AND name = N'IX_Suffix')

DROP INDEX IX_Suffix ON Person.Contact

CREATE NONCLUSTERED INDEX IX_Suffix ON Perso

(

Suffix, Title

)

INCLUDE (FirstName, MiddleName, LastName)

SELECT C.LastName, C.FirstName, C.MiddleName

, H.SalesOrderID, H.OrderDate

FROM Person.Contact C

JOIN Sales.SalesOrderHeader H ON H.ContactI

WHERE Suffix = 'Jr.'

ORDER BY Title

javascript:;
javascript:;

Zoom in | Open in new window

Figure 3 – A query plan for a JOIN

A quick look at the plan tells us a few things:

Both tables are scanned at the same time.
Most of the work is spent in scanning the tables.
More rows come out or the SalesOrderHeader table than out
of the Contact table.
The two tables are not clustered into the same sequence;
therefore matching each SalesOrderHeader rows with its
Contact row will require extra effort. In this case, a Hash
Match operation is used. (More on hashing later.)
The effort required to sort the selected rows is negligible.

Even individual streams of rows can be broken into separate
streams of fewer rows each to take advantage of parallel
processing. For example, if we change the WHERE clause in the
above query to WHERE Suffix is NULL.

Far more rows will be returned, as more the 95% of the Contact
rows have a NULL Suffix. The new query plan reflects this, as
show in Figure 4.

Zoom in | Open in new window

Figure 4 – A parallel query plan

The new plan also shows us that the increased number of
Contact rows has caused the Match and Sort operations to
become the critical path for this query. If we need to improve its
performance, we must attack these two operations first. Once
again, an index with included columns will help.

Like most joins, our example joins two tables via the foreign key /
primary key relationship. One of those tables, Contact, is
sequenced by ContactID, which also happens to be its primary
key. In the other table, SaleOrderHeader, ContactID is a foreign
key. Since ContactID is a foreign key, requests for
SaleOrderHeader data accessed by ContactID, such as our join
example, might be a common business requirement. These
requests would benefit from an index on ContactID.

Whenever you are indexing a foreign key column, always ask
yourself what, if any, columns should be added, as included
columns, to the index. In our case, we have just one query rather
than a family of queries to support. Thus, our only included
column will be OrderDate. To support a family of ContactID
oriented queries against the SaleOrderHeader table, we would
include more SaleOrderHeader columns in the index, as needed,
to support those additional queries.

Our CREATE INDEX statement is:

CREATE NONCLUSTERED INDEX IX_ContactID ON Sa

(

ContactID

)

javascript:;
javascript:;
javascript:;
javascript:;

And the new plan for executing our join of SalesOrderHeader and
Contact information is in Figure 5.

Zoom in | Open in new window

Figure 5 – Plan for a JOIN query with a supporting index on
each table

Because both input streams now are sequenced by the join
predicate column, ContactID; the JOIN portion of the query can
be done without splitting the streams and without hashing; thus
reducing what was 26 + 5 + 3 = 34% of the work load down to 4%
of the work load.

Sorting, Presorting and Hashing
Many query operations require that data be grouped before the
operation can be performed. These include DISTINCT, UNION
(which implies distinct), GROUP BY (and its various aggregate
functions), and JOIN. Normally, SQL Server will use one of three
methods to achieve this grouping, the first of which requires your
assistance:

Happily discover that the data has been presorted into the
grouping sequence.
Group the data by performing a hashing operation.
Sort the data into the grouping sequence.

Presorting
Indexes are your way of presorting data; that is, of providing data
to SQL Server in frequently needed sequences. This is why the
creation of nonclustered indexes, each containing included
columns, benefited our previous examples. In fact, if you place
your mouse over the Merge Join icon in the most recent query,
the phrase Match rows from two suitably sorted input streams,
exploiting their sort order. will appear. This informs you that the
rows of the two tables / indexes were joined using the absolute
minimum of memory and processor time. Suitably sorted input is
a wonderful phrase to see when mousing over query plan icons,
for it validates your choice of indexes.

Hashing
If the incoming data is not in a desirable sequence, SQL Server
may use a hashing operation to group the data. Hashing is a
technique that can use a significant amount of memory, but is
often more efficient than sorting. When performing DISTINCT,
UNION, and JOIN operations, hashing has an advantage over
sorting in that individual rows can be passed to the next operation
without having to wait for all incoming rows to be hashed. When
calculating grouped aggregates, however, all input rows must be
read before any aggregate values can be passed to the next
operation.

The amount of memory required to hash information is directly
related to the number of groups required. Thus the hashing

INCLUDE (OrderDate)

javascript:;
javascript:;

required to resolve:

SELECT Gender, COUNT(*)

FROM NewYorkCityCensus

GROUP BY Gender

Would require very little memory, for there would be only two
groups; Female and Male, regardless of the number of input
rows. On the other hand:

SELECT LastName, FirstName, COUNT(*)

FROM NewYorkCityCensus

GROUP BY LastName, FirstName

Would result in an enormous number of groups, each requiring its
own space in memory; possibly consuming so much memory that
hashing becomes an undesirable technique for resolving the
query.

For more on query plan hashing, visit
http://msdn.microsoft.com/en-us/library/ms189582.aspx.

Sorting
If the data has not been presorted (indexed) and if SQL Server
deems that hashing cannot be done efficiently, SQL Server will
sort the data. This is normally the least desirable option.
Therefore, if a Sort icon appears early in the plan, check to see if
you can improve your indexing. If the Sorticon appears near the
end of the plan, it probably means that SQL Server is sorting the
final output into the sequence requested by an ORDER BY
clause; and that this sequence differs from the sequence that was
used to resolve the query’s JOINs, GROUP BYs, and UNIONs.
Usually, there is little you can do to avoid the sort at this point.

Conclusion
A query plan shows you the methodology SQL Server intends to
use, or has used, to execute a query. It does so by detailing the
operations that will be used, the flow of the rows from operation
to operation, and the parallelism involved.

You view this information as a text, graphical, or XML display.
Graphical plans show the relative work load of each operation.
Graphical plans may suggest an index that will improve the
performance of the query.
Understanding query plans will help you evaluate and optimize
your index design.

This article is part of the Stairway to SQL Server Indexes
Stairway

Sign up to our RSS feed and get notified as soon as we publish a
new level in the Stairway!

http://msdn.microsoft.com/en-us/library/ms189582.aspx
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Xml/Rss/stairways

