
Thank this author by sharing: 0

2015/07/11
BLOG

2016/01/04

ARTICLE

2017/05/17

ARTICLE

2013/07/30

BLOG

2015/06/25
ARTICLE

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Keep up to date -
daily newsletter:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Stairway to Columnstore
Indexes Level 5: Adding
New Data To Columnstore
Indexes
By Hugo Kornelis, 2015/11/04

The Series
This article is part of the Stairway Series: Stairway to
Columnstore Indexes

SQL Server 2012 and later offer a very different type of index
from the traditional b-tree, the in-memory columnstore index.
These indexes use a column-based storage model, as well as a
new 'batch mode' of query execution and can offer huge
performance increases for certain workloads. But how are they
built, how do they work, and why do they manage to have such a
dramatic impact on performance? In this stairway, Hugo Kornelis
explains all, with his usual mix of concise description and detailed
demonstration.

The procedure for converting data into columnstore format as
described in level 3 of this series is optimal for static data. SQL
Server expends considerable resources spent to try to find the
best possible compression for the data. But in most tables, data
is hardly ever static. We are constantly inserting new rows, and
updating or deleting existing rows. If you think about what this
means for a columnstore index, you will realize that this comes
with some unique challenges.

In a data warehouse, adding new data is the most common type
of modification. Every day, new sales are added in the database,
along with the corresponding inventory movement records,
invoices, payment data, and general ledger entries. All this new
data is added to the warehouse, either continuously or during a
periodic load process. In this level we will look at the mechanisms
in SQL Server 2014 that support adding new rows to columnstore
indexes, and what consequences this should have for your load
processes.

When thinking about adding data to an existing columnstore, a
naïve approach could be to simply add the new rows at the end
of the last rowgroup. But this sounds easier than it is. For any
column that is dictionary encoded, the value to be inserted has to
be looked up in the global and local dictionary, and possibly
added to the latter. Depending on the compression algorithms
used, it might also be necessary to first process all prior values in
a segment before the new value can be added. These actions
would make the insert very slow. Also, once the last rowgroup

Related Articles

COLUMNSTORE INDEX… DEMO

COLUMNSTORE INDEX How data is
stored in traditional way For physical
storage of a table, its rows...

Stairway to Columnstore
Indexes Level 6: Updating and
Deleting Data in a Columnstore
Index

This level looks in detail at what happens
when we update or delete data from a
clustered columnstor...

Stairway to Columnstore
Indexes Level 12: Clustered or
Nonclustered?

The previous levels of this stairway
describe details, features, and limitations
of columnstore inde...

SQL Server 2014: Columnstore
Index improvements

In SQL Server 2012, a new feature was
added called Columnstore Indexes that
resulted in huge query p...

Learning Columnstore Indexes

References and links to learn more about
columnstore indexes.

Tags
columnstore index
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=355675&zid=15220&t=1522616839&auth=6a37561186053248f8c071f2ef1f2687
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f133133%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=362444&zid=15491&t=1522616840&auth=1faff3ca1547d41e67b35ae4f99c7297
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1729726.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/Hugo_Kornelis/264757/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/articles/Stairway+Series/126202/
http://www.sqlservercentral.com/blogs/sqlserversdba/2015/07/11/columnstore-index-demo/
http://www.sqlservercentral.com/articles/136174/
http://www.sqlservercentral.com/articles/157377/
http://www.sqlservercentral.com/blogs/jamesserra/2013/07/30/sql-server-2014-columnstore-index-improvements/
http://www.sqlservercentral.com/articles/127558/
http://www.sqlservercentral.com/articles/ColumnStore+Index/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

reaches its maximum size, a new rowgroup would have to be
opened, and the compression methods to be used for its
segments would have to be decided based on possibly just a
single row to be inserted – this will never result in optimal
choices!

This challenge, and other challenges associated with updating
and deleting data (to be covered in the next level) are probably
the reason why Microsoft released the nonclustered columnstore
index in SQL Server 2012 as a read-only index – after creating
the index, no inserts, updates, or deletes are allowed to the table,
so that none of the problems above will ever occur. But because
a business expects their databases to reflect the current situation,
including any changes that just happened, this read-only
restriction hampered adoption of the columnstore index feature,
and Microsoft luckily found ways to deal with the issues and
make an updatable version of the columnstore index in SQL
Server 2014. Note, though, that the architecture changes that
allow updating the data have been applied only to the new
clustered columnstore index; a nonclustered columnstore index
still makes the table read-only even on SQL Server 2014. (Based
on CTP releases so far, it appears that this limitation will finally be
lifted in SQL Server 2016).

The deltastore
As shown above, just adding new data to existing columnstore
rowgroups would be both inefficient and impractical. So when
Microsoft created the columnstore index without a read-only
restriction, they had to find a way around that problem. Their
solution is called the deltastore, an extra storage area that you
can think of as a temporary holding area where new data is
stored until sufficient rows have been collected to justify the effort
of converting them to the columnstore format.

The data in the deltastore is not stored in column oriented
fashion, but in a B-tree structure, the same format used for
traditional row oriented indexes. The deltastore does use page
compression, but this is a far cry from the compression ratios
achieved in the normal columnstore rowgroups. Additionally, the
deltastore does not support segment elimination either. In short,
none of the typical columnstore performance benefits apply to
data in the deltastore. However, in normal usage scenarios the
amount of rows in a deltastore will not be big enough that this
relative slowness causes noticeable problems.

If you have SQL Server 2014 available and you followed the
demos in the previous steps, you will now have a table
FactOnlineSales that has a nonclustered columnstore index and
is hence read-only, and also a table FactOnlineSales2 with a
clustered columnstore index. This table can be modified, so we
will now see what happens if we add some rows to it. The code in
listing 5-1 adds 500 rows, then queries the
sys.column_store_row_groups view using the same query we
already saw in listing 4-5 of the previous level, but with two extra
columns added. The results after running this code on my system
are shown in figure 5-1.

-- SQL Server 2014 only!!

USE ContosoRetailDW;

GO

http://www.sqlservercentral.com/articles/Stairway+Series/128989/

Listing 5-1: Observing the effect of adding rows

Zoom in | Open in new window

Figure 5-1: Rowgroup metadata after adding rows

If you compare the results to what we saw when we first ran this
query (back in level 4), you will notice that as a result of inserting
new rows, one extra row has been added to the
sys.column_store_row_groups DMV. If you look at the two
additional columns, state and state_description, you will see that
all original rowgroups have state 3 (COMPRESSED). The new

rowgroup is in state 1 (OPEN). This indicates that this is not a

"normal" columnstore rowgroup as we saw in the previous levels,
but a deltastore rowgroup. This deltastore was automatically
created when I added the new rows.

It is important to note that, even though a deltastore has now
been added to the columnstore index, all queries will still work as
before. The execution plans of your query will not change, and

-- Add 500 rows

INSERT dbo.FactOnlineSales2

 (DateKey, StoreKey, ProductKey, Pr

 CurrencyKey, CustomerKey, SalesOr

 SalesOrderLineNumber, SalesQuanti

 ReturnQuantity, ReturnAmount, Dis

 DiscountAmount, TotalCost, UnitCo

 ETLLoadID, LoadDate, UpdateDate)

SELECT TOP(500)

 DateKey, StoreKey, ProductKey, Pr

 CurrencyKey, CustomerKey, SalesOr

 SalesOrderLineNumber, SalesQuanti

 ReturnQuantity, ReturnAmount, Dis

 DiscountAmount, TotalCost, UnitCo

 ETLLoadID, LoadDate, UpdateDate

FROM dbo.FactOnlineSales;

-- Check the rowgroups metadata

SELECT OBJECT_NAME(rg.object_id) AS Ta

 i.name AS In

 i.type_desc AS In

 rg.partition_number,

 rg.row_group_id,

 rg.total_rows,

 rg.size_in_bytes,

 rg.[state],

 rg.state_description

FROM sys.column_store_row_groups AS rg

INNER JOIN sys.indexes AS i

 ON i.object_id = rg

 AND i.index_id = rg

WHERE i.name = N'CCI_FactOnlineSales2'

ORDER BY TableName IndexName

javascript:;
javascript:;

you will still get correct results. This is because the Clustered
Columnstore Index Scan operator that reads data from the
columnstore index understands the deltastore format as well, and
seamlessly integrates this data with the columnstore data into a
single data stream for the other operators to process.

Trickle insert vs bulk load
To examine the effect of inserting different numbers of rows in a
single INSERT statement, let’s now run the code in listing 5-2. I

first insert a large number of rows (150,000) at once, followed by
a smaller number of rows (15,000). The output of the metadata
query at the end of the listing (shown in figure 5-2) reveals some
interesting results.

Listing 5-2: Adding rows in bigger chunks

-- SQL Server 2014 only!!

USE ContosoRetailDW;

GO

-- Add another 150,000 rows

INSERT dbo.FactOnlineSales2

 (DateKey, StoreKey, ProductKey, Pr

 CurrencyKey, CustomerKey, SalesOr

 SalesOrderLineNumber, SalesQuanti

 ReturnQuantity, ReturnAmount, Dis

 DiscountAmount, TotalCost, UnitCo

 ETLLoadID, LoadDate, UpdateDate)

SELECT TOP(150000)

 DateKey, StoreKey, ProductKey, Pr

 CurrencyKey, CustomerKey, SalesOr

 SalesOrderLineNumber, SalesQuanti

 ReturnQuantity, ReturnAmount, Dis

 DiscountAmount, TotalCost, UnitCo

 ETLLoadID, LoadDate, UpdateDate

FROM dbo.FactOnlineSales;

-- And yet another 15,000 rows

INSERT dbo.FactOnlineSales2

 (DateKey, StoreKey, ProductKey, Pr

 CurrencyKey, CustomerKey, SalesOr

 SalesOrderLineNumber, SalesQuanti

 ReturnQuantity, ReturnAmount, Dis

 DiscountAmount, TotalCost, UnitCo

 ETLLoadID, LoadDate, UpdateDate)

SELECT TOP(15000)

 DateKey, StoreKey, ProductKey, Pr

 CurrencyKey, CustomerKey, SalesOr

 SalesOrderLineNumber, SalesQuanti

 ReturnQuantity, ReturnAmount, Dis

 DiscountAmount, TotalCost, UnitCo

 ETLLoadID, LoadDate, UpdateDate

FROM dbo.FactOnlineSales;

Zoom in | Open in new window

Figure 5-2: Rowgroup metadata after adding more rows

As you can see, the 150,000 rows that were added in the first
query of listing 5-2 were inserted into a new rowgroup, and this
rowgroup has state 3 (COMPRESSED), indicating that this

rowgroup is not a deltastore but a regular columnstore rowgroup.
The 15,000 rows of the second insert were then added to the
open deltastore rowgroup that remained after running the code in
listing 5-1. The state of this rowgroup has not changed, but its
total_rows value has increased to 15,500.

What we saw from running listing 5-2 are the two basic modes of
inserting rows into a clustered columnstore index. Any insert of
102,399 or fewer rows is considered a "trickle insert". These rows
are added to an open deltastore if one is available (and not
locked), or else a new deltastore rowgroup is created for them.
However, if 102,400 rows or more are inserted at once through
any means that supports bulk loading (see below), then it’s
considered a "bulk load". This means that a new rowgroup is
formed out of all inserted rows, using the columnstore creation
process outlined in level 3 (except that no new global dictionary is
built). The upper limit of 1,048,576 rows per rowgroup still
applies. If the number of rows inserted exceeds that limit, SQL
Server will first create a new rowgroup for the first 1,048,576
rows, then compare the remaining number of rows with the
102,400 threshold to determine whether they should be bulk
loaded or trickle inserted.

Methods for bulk loading

An insert of 102,400 rows or more will only be bulk-loaded if
the "Bulk Insert API" is used. When using standard tools, this
means that you would have to use tools like bcp.exe, the
‘fast-load’ SSIS OleDB destination, or the T-SQL BULK

INSERT statement. The batch size used in these tools needs

to exceed the 102,400 rows threshold in order to enable bulk
loading. For bcp.exe, the batch size is set with the –b option.
For SSIS, you should set the DefaultBufferMaxRows and
DefaultBufferSize properties of the data flow component to
the maximum values, but you will also need to set the
Maximum insert commit size of the OLE DB Destination
component to 0, as described here. And for BULK INSERT,

you simply use the BATCHSIZE parameter.

The standard T-SQL INSERT ... SELECT statement will

also use the bulk load method if the total number of rows
inserted is large enough, as shown by the results of listing 5-
2. However, the T-SQL MERGE statement will always use the

trickle insert method, regardless of the number of rows to be
inserted.

In most cases, columnstore indexes perform best with fewer and
bigger rowgroups. This means that controlling batch size is
crucial when designing your data loads – both the batch size as
set in the options, as well as the actual number of rows. For

javascript:;
javascript:;
http://www.sqlservercentral.com/articles/Stairway+Series/126202/
http://www.nikoport.com/2015/04/19/clustered-columnstore-indexes-part-51-ssis-dataflow-max-buffer-memory/

instance, if you have between 100,000 and 120,000 new rows
per day, a single daily load would result in either lots of rows in
the delta store, or lots of small rowgroups. Switch to a weekly
import, and now you add one rowgroup per week with about
750,000 rows – close enough to the maximum size that you can
expect good performance. But beware that any queries you run
now report from older data, unless you add an extra table to
temporarily hold this week’s data and modify the queries to add
that extra table.

The tuple mover
In typical usage scenarios, a columnstore index will have
hundreds of millions of rows, and the amount of rows added
through trickle insert will be just a small fraction of that. But given
enough time, this would still result in deltastores that, eventually,
become big enough to have a noticeable impact on performance.
This scenario is prevented by a process called the tuple mover.
To see this process in action, run the code in listing 5-3.

-- SQL Server 2014 only!!

USE ContosoRetailDW;

GO

-- Add another 1,100,000 rows, in 11 batches

INSERT dbo.FactOnlineSales2

 (DateKey, StoreKey, ProductKey, Pr

 CurrencyKey, CustomerKey, SalesOr

 SalesOrderLineNumber, SalesQuanti

 ReturnQuantity, ReturnAmount, Dis

 DiscountAmount, TotalCost, UnitCo

 ETLLoadID, LoadDate, UpdateDate)

SELECT TOP(100000)

 DateKey, StoreKey, ProductKey, Pr

 CurrencyKey, CustomerKey, SalesOr

 SalesOrderLineNumber, SalesQuanti

 ReturnQuantity, ReturnAmount, Dis

 DiscountAmount, TotalCost, UnitCo

 ETLLoadID, LoadDate, UpdateDate

FROM dbo.FactOnlineSales;

go 11

-- Check the rowgroups metadata

SELECT OBJECT_NAME(rg.object_id) AS Ta

 i.name AS In

 i.type_desc AS In

 rg.partition_number,

 rg.row_group_id,

 rg.total_rows,

 rg.size_in_bytes,

 rg.[state],

 rg.state_description

FROM sys.column_store_row_groups AS rg

INNER JOIN sys.indexes AS i

 ON i.object_id = rg

 AND i.index_id = rg

WHERE i.name = N'CCI_FactOnlineSales2'

Listing 5-3: Overflowing a deltastore rowgroup

Zoom in | Open in new window

Figure 5-3: The tuple mover in action

The code in listing 5-3 first adds 1.1 million rows, using 11
batches of 100,000 rows each – just below the threshold for bulk
loading, so these rows are all trickle inserted into the deltastore.
(Note that this is NOT an example of a best practice for loading
data!!). Since there already were 15,500 rows in the deltastore,
you might expect to see 1,115,500 rows in it now. But the results
of the DMV query show differently: once the deltastore contains
1,048,576 rows, it is considered full. The state changes to 2
(CLOSED), and a new deltastore rowgroup is created for the

remaining 66,924 rows. Note that the data in a closed rowgroup
is still in the same row-oriented format as when it was open; the
only difference is that the rowgroup is now marked so it can no
longer accept new rows, and it is ready to be converted to the
compressed column-oriented format we expect in a columnstore
index.

After waiting five minutes, the DMV query is repeated. Now the
closed rowgroup has gone, and is replaced by a new rowgroup
with state 3 (COMPRESSED). This is caused by the tuple mover –

a background process that wakes up every five minutes, checks
to see if there are any rowgroups with state 2, and if there are,
converts the data in these rowgroups to columnstore format.

The tuple mover is a slow worker. If it finds multiple closed
rowgroups, it will convert just one of them and then sleep for a
short time (about 10-15 seconds) before moving on to the next.
An import process can easily produce closed deltastores at a
much higher rate; in such cases, the tuple mover will fall behind,
and it may take a long time before it catches up. During that
period, query performance on your columnstore will suffer:
reading a single deltastore when processing a columnstore index
will not significantly affect performance, but having to read
dozens of them will. This is not a bug. The tuple mover is
deliberately designed to be slow, in order to prevent this
background process from overburdening your system. A properly
designed data load process ensures that the majority of data is
bulk loaded, and only small amounts of rows are trickle inserted
in the deltastore. With a well-designed import process, the tuple
mover should never fall behind.

Conclusion
One of the major blockers for adoption of the columnstore index
in SQL Server 2012 was the read-only limitation. Removing that
limitation in SQL Server 2014 is a major step forward. It is now
possible to achieve the performance benefits of columnstore
indexes without having to jump through hoops whenever data
needs to change.

In this level we focused on adding data. When adding large
amounts of data, the "bulk load" method will be used. This
method immediately converts the new data to columnstore
format, so that later queries can immediately benefit from the
better performance. For smaller inserts, the new data is

javascript:;
javascript:;

