
UPDATE STATISTICS: the Secret IO Explosion

 January 29, 2014 Kendra Little Index Maintenance, SQL Server, Statistics

 84 Comments

I �rst knew something was up when I looked at the job history for a simple maintenance plan. It

had two steps:

1. Rebuild all the indexes in the database – this took 10 minutes each night.

2. Update statistics – this took 2-3 hours each night.

What was going on? Statistics in SQL Server are small, lightweight objects. Indexes are larger and

contain more data. Why would updating statistics take so much longer?

Maintenance Plans light the fuse

I love the concept of maintenance plans, but I don’t love the way all the tasks are set up.

In the case I was looking at, the Update Statistics task was being used with two values that are

set by default:

Run against all statistics

Update them with fullscan

https://www.brentozar.com/archive/author/kendra-little/
https://www.brentozar.com/archive/category/indexing/index-maintenance/
https://www.brentozar.com/archive/category/sql-server/
https://www.brentozar.com/archive/category/development/statistics/
http://msdn.microsoft.com/en-us/library/ms190397.aspx
https://www.brentozar.com/sql/index-all-about-sql-server-indexes/
https://www.brentozar.com/
javascript:void(0);
javascript:void(0);
https://www.facebook.com/BrentOzarUnlimited/
https://twitter.com/BrentOzarULTD
https://www.linkedin.com/company/brent-ozar-unlimited
https://www.youtube.com/user/BrentOzar
https://github.com/BrentOzarULTD

“All” statistics means that both “column” and “index” statistics will be updated. There may be

quite a lot of statistics — most people leave the “auto create statistics” option enabled on their

databases, which means that queries will dynamically cause the creation of more and more

statistics over time.

Combined with “fullscan”, updating all statistics can become a signi�cant amount of work.

“Fullscan” means that to update a statistic, SQL Server will scan 100% of the values in the index

or column. That adds up to a lot of IO.

Why ‘SELECT StatMan’ repeatedly scans tables

If SQL Server needs to update column level statistics for the same table, it could potentially use a

single scan and update multiple stats, right?

Because of the runtimes I was seeing, I was pretty sure that wasn’t happening. But we can take a

closer look and see for ourselves.

In our maintenance plan task, if we hit “View TSQL”, a window pops up showing us the

comamnds that the plan will run. (I love this feature, by the way!) We will use one of these

commands to test things out in a bit.

First, let’s make sure we have some column level statistics on our database. It already has

indexes and their associated stats. To create some column level stats, I run these queries:

That will create two “auto” stats what start with “_WA_Sys”, and two stats that I named myself. To

check ’em out and see ALL the index and column stats on the table, we run:

Sure enough, this shows us that we have seven stats total– three are related to indexes.

1

2

3

4

5

6

7

8

9

10

--create two column stats using 'auto create statistics'

select * from Person.Person where MiddleName like 'M%';

select * from Person.Person where Title is not null;

GO

--Create two filtered stats on Title

create statistics kl_statstest1 on Person.Person (Title) where Title = 'Mr.'

GO

create statistics kl_statstest2 on Person.Person (Title) where Title = 'Ms.'

GO

1

2

exec sp_helpstats 'Person.Person', 'All';

GO

Alright, time to run that sample command excerpted from our maintenance plan. I start up an

Extended Events trace to capture IO from sp_statements completed, then run the command the

maintenance plan was going to use to update every statistic on this table with fullscan:

Here’s the trace output –click to view it in a larger image:

Looking at the Extended Events trace output, I can see the commands that were run as well as

their logical reads. The commands look like this:

The “logical_reads” column lets me know that updating four of these statistics had to do four

separate scans of my table– and three of them are all on the Title column! (Doing a SELECT *

FROM Person.Person shows 5,664 logical reads by comparison.)

IO was lower for statistics related to nonclustered indexes because those NC indexes have fewer

pages than the clustered index.

A better way to update statistics: Let SQL Server pick the TABLESAMPLE

If you just run the TSQL command ‘UPDATE STATISTICS Person.Person’ (without telling it to scan

all the rows), it has the option to do something like this:

1

2

3

UPDATE STATISTICS [Person].[Person]

WITH FULLSCAN

GO

1

2

3

4

5

SELECT StatMan([SC0]) FROM

(SELECT TOP 100 PERCENT [Title] AS [SC0]

FROM [Person].[Person] WITH (READUNCOMMITTED)

WHERE ([title]='Mr.') ORDER BY [SC0])

AS _MS_UPDSTATS_TBL OPTION (MAXDOP 16)

1

2

3

4

5

6

7

8

SELECT StatMan([SC0], [SB0000])

FROM

(SELECT TOP 100 PERCENT [SC0],

 step_direction([SC0]) over (order by NULL) AS [SB0000]

 FROM

 (SELECT [Title] AS [SC0]

 FROM [Person].[Person] TABLESAMPLE SYSTEM (3.547531e+001 PERCENT) WITH (RE

OPTION (MAXDOP 1)

https://www.brentozar.com/wp-content/uploads/2020/01/Update-Statistics-Extended-Events-Trace-IO.png

It dynamically �gures out a sample size by which to calculate results! (It can pick a variety of

options– including scanning the whole thing.)

How to configure faster, better statistics maintenance

Avoid falling for the pre-populated settings in the “Update Statistics” task in the maintenance

plan. It’s rare to truly need to use FULLSCAN to update stats in SQL Server, and even when cases

where it’s justi�ed you want to implement that with statements targeting the individual statistics

to update. The basic “UPDATE STATISTICS Schema.TableName” command is pretty clever– the

issue is simply that Maintenance Plans don’t make it easy for you to run that!

Unfortunately, if you use maintenance plans there’s no super simple solution– it forces you to

specify either fullscan or a speci�c sample. There’s no way to just use the basic “You compute the

minimum sample” with that task.

You’ve still got good options, they’re just a few more steps:

You could use a t-sql related task or a custom SQL Agent job to run sp_updatestats

You could use a free index and statistics maintenance script. The example I’ve linked to is

super clever, and avoids updating statistics where it has just rebuilt an index!

You could also let auto update stats take care of the issue– that’s often just �ne on small

databases or where there aren’t major data �uctuations

And each of those options should chew up less IO than updating all index and column statistics

with FULLSCAN.

Kendra Little

My goal is for you to understand your SQL Server’s behavior– and learn how

to change it. When I’m not �guring out the solutions to your database

problems, you’ll �nd me at user group meetings in Portland, Oregon. I also

love to draw.

http://technet.microsoft.com/en-us/library/ms173804.aspx
http://ola.hallengren.com/sql-server-index-and-statistics-maintenance.html
https://www.brentozar.com/blitz/auto-update-stats-disabled/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://www.brentozar.com/archive/author/kendra-little/
https://www.brentozar.com/archive/2014/01/reporting-production-sql-server-video/
https://www.brentozar.com/archive/2014/01/what-do-you-ask-the-leaving-dba/

Reporting in Production: SQL Server

(video)

 Previous Post

What Do You Ask the Leaving DBA?
Next Post

 84 Comments. Leave new

Allen McGuire

I actually had a strange performance issue result from stats being updated this

morning – a job went from 44 minutes right after the update took place. First thought:

developers deployed something After a little analysis and a new NC index, all was

well. After that, however, I still wanted to �nd out what happened so I turned to my

maintenance jobs.

To investigate my index/stats maintenance history, I have a report I created to query

Ola’s logging table if anyone is interested. Turns out the table I put an index on had it’s

stats updated, obviously throwing the execution plan out of whack. You would have to

update the data sources and parameter defaults, but that’s about it.

http://allen-mcguire.blogspot.com/2014/01/rdl-for-olas-index-maintenance-

logging.html

Reply

January 29, 2014 1:15 pm

Allen McGuire

Ah – posts don’t like greater than/less than signs – job went from under a minute

to over 44 minutes Some of my words got hacked out.

Reply

January 29, 2014 1:16 pm

Chris Woods

Allen–

That link no longer goes to the article on your website. Do you still happen to

have the post?

August 28, 2014 5:13 pm

https://www.brentozar.com/archive/2014/01/reporting-production-sql-server-video/
https://www.brentozar.com/archive/2014/01/what-do-you-ask-the-leaving-dba/
http://allen-mcguire.blogspot.com/
http://allen-mcguire.blogspot.com/2014/01/rdl-for-olas-index-maintenance-logging.html
http://allen-mcguire.blogspot.com/

CW

Reply

Kendra Little

The URL looks like it’s just been updated. Here’s an updated link, or you

can search for the term RDL on his blog in the search box at the top right.

Reply

August 28, 2014 5:17 pm

Klaas

Thanks Kendra

So would you recommend to SET AUTO_CREATE_STATISTICS OFF ?

Reply

January 30, 2014 2:20 am

Kendra Little

Hi Klaas,

I recommend leaving that ON — statistics are extremely helpful to the optimizer

for query plan quality.

I just wouldn’t update all your statistics with fullscan. The statistics are good and

lightweight, but the maintenance plan task isn’t great.

Hope this helps!

Kendra

Reply

January 30, 2014 10:37 am

Klaas

OK

January 31, 2014 2:34 am

http://allen-mcguire.blogspot.com/2014/02/rdl-for-olas-index-maintenance-logging.html

