
Thank this author by sharing: 1

2008/10/24
FORUM

2010/02/02

ARTICLE

2014/08/28

ARTICLE

2015/11/29
BLOG

2018/03/19
ARTICLE

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Keep up to date -
daily newsletter:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Deeper into Nonclustered
Indexes: Stairway to SQL
Server Indexes Level 2
By David Durant, 2017/10/18 (first
published: 2014/11/26)

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

Level 1 in the SQL Server Indexes Stairway introduced SQL
Server indexes, in general, and nonclustered indexes
specifically. As our first case study, we demonstrated the
potential benefit of an index when retrieving a single row from a
table. In this level, we continue our investigation of nonclustered
indexes; examining their contribution to good query performance
in cases that go beyond retrieving a single row from a table.

As will be the case in most of these our levels, we introduce a
small amount of theory, examine some index internals to help
explain the theory, and then execute some queries. These
queries are executed with and without indexes, and with
performance reporting statistics turned on, so that we can view
the impact of the indexes.

We will be using the subset of tables from the AdventureWorks
database that we used in Level 1, concentrating on the Contact

table throughout this level. We will use just one index, the
FullName index that we used in Level 1, to illustrate our points.

To ensure that we control the indexing on the Contact table, we’ll
make two copies of the table in the dbo schema, and only build
the FullName index on one of them. This will give us our
controlled environment: two copies of the table: one with a single
nonclustered index and one without any indexes.

Note:
All TSQL code shown in this Stairway level can be
downloaded at the bottom of the article.

The code in Listing 1 makes the copies of the Person.Contact
table, and we can rerun this batch anytime we wish to start with a
‘clean slate’.

Related Articles

index entry

index entry

Covering Index using Included
Columns

This article from Josef Richberg details
the benefits of included columns for use in
creating a cove...

Clustered Columnstore Index
Gives "Unable to find index
entry" Error

The Clustered columnstore index
generates "unable to find index entry"
error and a memory dump after...

Covering Indexes

Microsoft continues to improve indexes
and options for additional performance
enhancements. One I se...

Interviews: Covering index

A few notes on how to prepare for an
interview with indexing questions.

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=328527&zid=15220&t=1522615997&auth=2e01a56735fceb68e141740f8f485393
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72286%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=362444&zid=15491&t=1522615997&auth=e289fb26ac36886b30331e4ee9ab6bde
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1063677.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Forums/FindPost590412.aspx
http://www.sqlservercentral.com/articles/69179/
http://www.sqlservercentral.com/articles/113752/
http://www.sqlservercentral.com/blogs/the-smiling-dba/2015/11/26/covering-indexes/
http://www.sqlservercentral.com/articles/169646/
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

Listing 2.1: Make copies of the Person.Contact table

A snippet of the Contacts table is shown here:

ContactID FirstName MiddleName LastName

EmailAddress

 .

 .

1288 Laura F Norman

laura1@adventure-works.com

651 Michael Patten

 michael20@adventure-works.com

1652 Isabella R James

isabella6@adventure-works.com

1015 David R Campbell

david8@adventure-works.com

1379 Balagane Swaminath

balaganesan0@adventure-works.c

742 Steve Schmidt

steve3@adventure-works.com

1743 Shannon C Guo

shannon16@adventure-works.com

1106 John Y Chen

john2@adventure-works.com

1470 Blaine Dockter

blaine1@adventure-works.com

833 Clarence R. Tatman

clarence0@adventure-works.com

1834 Heather M Wu

heather6@adventure-works.com

1197 Denise H Smith

denise0@adventure-works.com

560 Jennifer J. Maxham

IF EXISTS (

 SELECT *

 FROM sys.tables

 WHERE OBJECT_ID = OBJECT_ID('dbo.Co

DROP TABLE dbo.Contacts_index;

GO

IF EXISTS (

 SELECT *

 FROM sys.tables

 WHERE OBJECT_ID = OBJECT_ID('dbo.Co

 DROP TABLE dbo.Contacts_noindex;

GO

SELECT * INTO dbo.Contacts_index

 FROM Person.Contact;

SELECT * INTO dbo.Contacts_noindex

 FROM Person.Contact;

jennifer1@adventure-works.com

1561 Ido Ben-Sacha

ido1@adventure-works.com

924 Becky R. Waters

becky0@adventure-works.com

.

The Nonclustered Index Entry
The following statement creates our FullName nonclustered index
on the Contacts_index table.

CREATE INDEX FullName

 ON Contacts_index

 (LastName, FirstName);

Listing 2.2 - Creating a nonclustered index

Remember that a nonclustered index stores the index keys in
order, along with a bookmark that is used to access the actual
data in the table itself. You can think of the bookmark as a kind of
pointer. Future levels will describe the bookmark, its form and its
use, in more detail.

A snippet of the FullName index is shown here, consisting of the
LastName and FirstName as Key columns, plus the bookmark:

:--- Search Key Columns :

 Bookmark

 .

Russell Zachary =>

Ruth Andy =>

Ruth Andy =>

Ryan David =>

Ryan Justin =>

Sabella Deanna =>

Sackstede Lane =>

Sackstede Lane =>

Saddow Peter =>

Sai Cindy =>

Sai Kaitlin =>

Sai Manuel =>

Salah Tamer =>

Salanki Ajay =>

Salavaria Sharon =>

Each entry contains the index key columns and the bookmark
value. In addition, a SQL Server nonclustered index entry has
some internal-use-only header information and may contain some
optional data values. Both of these will be covered in later levels;
neither is important at this time for a basic understanding of
nonclustered indexes.

For now, all we need to know is that the key value enables SQL
Server to find the appropriate index entry(s); and that the entry’s
bookmark value enables SQL Server to access the
corresponding data row in the table.

The Benefit of Index Entries being in
Sequence

An index’s entries are sequenced by index key value(s), so SQL
Server can rapidly traverse the entries sequentially in either
direction. This scanning of sequenced entries can commence
from the start of the index, the end of the index, or from any entry
within the index.

Thus, if a request asks for all the contacts whose last name
begins with the letter “S” (WHERE LastName LIKE 'S%'), SQL
Server can quickly navigate to the first “S” entry (“Sabella,
Deanna”), and then traverse the index, using the bookmarks to
access the rows, until it reaches the first “T” entry; at which point
it knows that it has retrieved all the “S” entries.

The above request would execute even faster if all the selected
columns were in the index. Thus, if we issued:

SELECT FirstName, LastName

 FROM Contact

 WHERE LastName LIKE 'S%';

SQL Server can quickly navigate to the first “S” entry and then
traverse through the index entries, ignoring the bookmarks and
retrieving the data values directly from the index entries, until it
reaches the first “T” entry. In relational database terminology, the
index has “covered” the query.

Any SQL operator that benefits from sequenced data can benefit
from an index. This includes ORDER BY, GROUP BY,
DISTINCT, UNION (not UNION ALL), and JOIN…ON.

For instance, if a request asks for a count of contacts by last
name, SQL Server can start counting at the first entry, and
proceed down the index. Every time the value of the last name
changes, SQL Server outputs the current count and starts a new
count. As with the previous request, this is a covered query; SQL
Server accesses just the index, ignoring the table completely.

Note the importance of the left-to-right sequence of the key
columns. Our index is very helpful if a request asks for everyone
whose last name is “Ashton”, but it is of little or no help if the
request is for everyone whose first name is “Ashton”.

Testing Some Sample Queries
If you want to execute the test queries that follow, make sure you
run the script to create both versions of the new Contact tables,
dbo.Contacts_index and dbo.Contacts_noindex; and also run the
script to create the LastName, FirstName index on
dbo.Contacts_index.

To validate the assertions in the previous section, we turn on the
same performance statistics that we used in level 1 and run some
queries; with and without indexes.

SET STATISTICS io ON

SET STATISTICS time ON

Because the Contacts table from the AdventureWorks database
has only 19972 rows in it, it will be difficult to get meaningful
values for statistics time. Most of our queries will show a CPU
time value of 0, so we are not showing the output from statistics
time; only from statistics IO, which reflects the possible number of
pages that will have to be read. These values will allow us to

compare queries in a relative sense, to determine which queries
with which indexes perform better than others. If you want a
bigger table for more realistic timing tests, a script to build a
million row version of the Contact table is available with this
article. All of the discussion that follows will assume you’re using
the standard 19972-row table.

Testing a Covered Query
Our first query is a query that will be covered by the index; one
that retrieves a limited set of columns for all contacts whose last
name begins with “S”. Query execution information is given in
Table 2.1.

SQL SELECT FirstName, LastName
FROM dbo.Contacts -- execute with both
Contacts_noindex and
-- Contacts_index
WHERE LastName LIKE 'S%'

Without
Index

(2130 row(s) affected)
Table 'Contacts_noindex'. Scan count 1, logical reads
568.

With Index (2130 row(s) affected)
Table 'Contacts_index'. Scan count 1, logical reads
14.

Index
Impact

IO reduced from 568 reads to 14 reads.

Comments An index that covers the query is a good thing to
have. Without an index, the entire table is scanned to
find the rows.
The “2130 rows” statistic indicates that “S” is a
popular initial letter for last names, occurring in ten
percent of all contacts.

Table 2.1: Execution results when running a covered query

Testing a Non-Covered Query
Next, we modify our query to request the same rows as before,
but include columns that are not in the index. Query execution
information is given in Table 2.2.

SQL SELECT *
FROM dbo.Contacts -- execute with both
Contacts_noindex and
-- Contacts_index
WHERE LastName LIKE 'S%'

Without
Index

Same as previous query. (Because it is a table scan).

With Index (2130 row(s) affected)
Table 'Contact_index'. Scan count 1, logical reads
568.

Index
Impact

No impact at all.

Comments The index was never used during the execution of the
query!
SQL Server decided that jumping from an index entry
to the corresponding row in the table 2130 times
(once for each row) was more work than scanning
the entire table of one million rows to find the 2130
rows that it needed.

Table 2.2: Execution results when running a non-covered
query

Testing a Non-Covered Query but Being
More Selective
This time, we make our query more selective; that is, we narrow
down the number of rows being requested. This increases the
probability that the index will be beneficial to that query. Query
execution information is given in Table 2.3.

SQL SELECT *
FROM dbo.Contacts -- execute with both
Contacts_noindex and
-- Contacts_index
WHERE LastName LIKE 'Ste%'

Without
Index

Same as previous query. (Because it is a table scan).

With Index (107 row(s) affected)
Table 'Contact_index'. Scan count 1, logical reads
111.

Index
Impact

IO reduced from 568 reads to 111 reads..

Comments SQL Server accessed the 107 “Ste%” entries, all of
which are located consecutively within the index.
Each entry’s bookmark was then used to retrieve to
corresponding row. The rows are not located
consecutively within the table.

The index benefitted this query; but not as much as it
benefitted the first query, the “covered” query;
especially in terms of number of IOs required to
retrieve each row.

You might expect that reading 107 index entries plus
107 rows would require 107 + 107 reads. The
reason why only 111 reads were required will be
covered at a higher level. For now, we will say that
very few of the reads were used to access the index
entries; most were used to access the rows.

Since the previous query, which requested 2130
rows, did not benefit from the index; and this query,
which requested 107 rows, did benefit from the index
- you might also wonder “where does the tipping point
lie?” The calculations behind SQL Server’s decision
also will be covered in a future level.

Table 2.3: Execution results when running a more selective
non-covered query

Testing a Covered Aggregate Query
Our last sample query will be an aggregate query; that is a query
that involves counting, totaling, averaging, et cetera. In this case,
it is a query that tells us the extent of name duplication within the
Contact table.

The results, in part, look like this:

Steel Merrill 1

Steele Joan 1

Steele Laura 2

Steelman Shanay 1

Steen Heidi 2

Stefani Stefano 1

Steiner Alan 1

Query execution information can be seen in Table 2.4.

SQL SELECT LastName, FirstName, COUNT(*) as
'Contacts'
FROM dbo.Contacts -- execute with both
Contacts_noindex and
-- Contacts_index
WHERE LastName LIKE 'Ste%'
GROUP BY LastName, FirstName

Without
Index

Same as previous query. (Because it is a table scan).

With Index (104 row(s) affected)
Table 'Contacts_index'. Scan count 1, logical reads 4.

Index
Impact

IO reduced from 568 reads to 4 reads.

Comments All the information needed by the query is in the
index; and it is in the index in the ideal sequence for
calculating the counts. All the “last name begins with
‘Ste’” entries are consecutive within the index; and
within that group, all the entries for a single
FirstName / LastName value are grouped together.

No accessing of the table was required; nor was any
sorting of intermediate results needed. Again, an
index that covers the query is a good thing to have.

Table 2.4: Execution results when running a covered
aggregate query

Testing a Non-Covered Aggregate Query
If we change the query to include columns that are not in the
index, we get the performance results that we see in Table 2.5.

SQL SELECT LastName, FirstName, MiddleName,
COUNT(*) as 'Contacts'
FROM dbo.Contacts -- execute with both
Contacts_noindex and
-- Contacts_index
WHERE LastName LIKE 'Ste%'
GROUP BY LastName, FirstName, MiddleName

Without
Index

Same as previous query. (Because it is a table scan).

With Index (105 row(s) affected)
Table 'ContactLarge'. Scan count 1, logical reads
111.

Index
Impact

IO reduced from 568 reads to 111 reads; same as
the previous non-covered query

Comments Intermediate work done while processing the query
does not always appear in the statistics. Techniques
that use memory or tempdb to sort and merge data
are examples of this. In reality, the benefit of an
index may be greater than that shown by the
statistics.

Table 2.5: Execution results when running a noncovered
aggregation query

