
Thank this author by sharing: 0

2013/05/13
FORUM

2010/02/24
FORUM

2010/02/09

FORUM

2012/04/05

BLOG

2012/11/07

FORUM

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Index Fragmentation in
SQL Server: Stairway to
SQL Server Indexes Level
11
By David Durant, 2013/11/27 (first published: 2012/02/01)

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

In Level 10 we looked at the internal structure of an index. Given
this knowledge of index structure, we can examine index
fragmentation: causes, cures, and when not to care.

Some Background / Review
Information
The following knowledge is essential to understanding index
fragmentation. Some of this information has been presented in
earlier levels, in the context of using indexes to retrieve data. In
this level, the context is index maintenance; thus, some old
information is repeated here, and some new information is
added.

Every table is either a heap or a clustered index.

If the table is a heap, then the bookmark portion of the
nonclustered indexes is a row identifier (RID). If the table is a
clustered index, then the bookmark portion of the nonclustered
indexes is the clustered index’s key values.

Index entries are stored in pages. Eight physically consecutive
pages comprise an extent.

Index levels are numbered from the bottom up, starting at zero.
Thus, the leaf level is always Level 0 and the lowest intermediate
level is always Level 1. The root page will be a level unto itself,
and will have the highest level number.

To scan an entire index means each page at the leaf level must
be read once and only once. Each page contains a pointer to the
next page and to the previous page. The logical sequence and

Related Articles

index fragmentation

index fragmentation

Clustered Index Fragmentation

Clustered Index Fragmentation

Index Vs Select criteria
sequence

Index Vs Select criteria sequence

SQL Server - Index
Fragmentation - Understanding
Fragmentation

When I had a discussion with couple of
my friends about index fragmentation, I
realized that th...

Index Rebuilds Still Leave
Fragmentation

Index Rebuilds Still Leave Fragmentation

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=355875&zid=15220&t=1522616280&auth=aee806e36ae0d1454e5c54de82aba3ca
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72443%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522616280&auth=c53cab68aba033fc35aa4dff182fc331
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1118408.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Forums/FindPost958572.aspx
http://www.sqlservercentral.com/Forums/FindPost872069.aspx
http://www.sqlservercentral.com/Forums/FindPost574303.aspx
http://www.sqlservercentral.com/blogs/practicalsqldba/2012/04/05/sql-server-index-fragmentation-understanding-fragmentation/
http://www.sqlservercentral.com/Forums/FindPost448556.aspx
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

the physical sequence of pages may differ. The pointer to the
next page might point to a page in the same extent; or to a page
that resides hundreds of pages in front of, or behind, the current
page; or even to a page in a different file.

The greater the correlation between the physical and logical
sequence of pages, the fewer the number of IOs required to scan
the index. When the two sequences are aligned, SQL Server can
read an entire extent, or more, per IO. Also, the greater the
correlation between the physical and logical sequence of pages,
the more read-ahead reads can be used, bringing pages into
memory before they are needed. This is true whether the entire
index, or just a section of the index, is being scanned.

To retrieve a single index entry, one page from each level,
starting with the root page, must be accessed. The performance
of this operation is not affected by the correlation between an
index’s logical and physical sequences.

With this information in mind, we can examine the subject of
index fragmentation.

What is Fragmentation?
Index fragmentation comes in two varieties – internal
fragmentation and external fragmentation. The best tool for
determining the fragmentation, either internal or external, of an
index is the sys.dm_db_index_physical_stats dynamic
management function. Because this function displays the index
id, but not the index name, queries often join it with the
sys.indexes view, so as to include the index name in the output.
We’ll be using this function throughout this Level, as first we
cover internal fragmentation and then address external
fragmentation.

Internal Fragmentation
Every page can hold a certain number of entries. That does not
mean that a page always holds the maximum number of entries.
Usually an index page is not completely full, for reasons that will
be covered in later in this Level. When we say that an index has
internal fragmentation, we mean that the pages are not
completely full. The average amount of occupied space per page
in an index is a measure of the internal fragmentation of the
index; also referred to as the average page fullness of the index.
Note that the higher the measurement, the lower the internal
fragmentation; a page that is 100% full has no internal
fragmentation.

Internal fragmentation is normally reported as a percentage; and
it indicates the fullness in bytes, not in entries. Thus, an index
page that has an internal fragmentation of 96% might be
completely full. That is, 4% of the page might not be enough
empty space for a new entry to be added. When the space
occupied by page header information and page offset pointers is
accounted for, a page whose individual index entries are
relatively large might be “full” at 90%, 80% or even less..

The sys.dm_db_index_physical_stats function reports internal
fragmentation in its avg_page_space_used_in_percent output
column. The query shown in Listing 1, which examines the
SalesOrderDetail table’s clustered index, displays internal
fragmentation information:

Listing 1: A query to return internal fragmentation values

The query returns one row of output for each level in the index,
as shown in Figure 1:

Zoom in | Open in new window

Figure 1: Output from the internal fragmentation query

The subject of this particular query is a clustered index; thus, the
leaf level of the index is the rows of the table. The output row for
level 0, the first row in the above output, tells us that the table’s
rows are spread over 1234 pages which are, on the average,
99% full. In other words, this table has minimal internal
fragmentation.

External Fragmentation
In contrast to internal fragmentation, external fragmentation
refers to the lack of correlation between the logical sequence of
an index and its physical sequence. It also is reported as a
percentage. To quote Microsoft Technet, it is “the percentage of
out-of-order pages in the leaf pages of an index. An out-of-order
page is a page for which the next physical page allocated to the
index is not the page pointed to by the next-page pointer in the
current leaf page.” Although the Technet definition limits itself to
the leaf level only, you will note that
sys.dm_db_index_physical_stats can return fragmentation
information for all levels of an index.

Note that, unlike internal fragmentation, a higher number means
a greater amount of external fragmentation; thus an index with an
external fragmentation of 100% is completely fragmented
externally. That is, there is no correlation at all between its logical
and physical sequence of pages.

Consider the simple example illustrated in Figure 2. A sixteen
page index occupies the extents starting at pages 40 and 56 of a
database file. Except for the last page in each extent, every
page’s next-page pointer points to the next page in the extent.
The last page in the extent at page 40 points to the first page in
the extent 56. The last page in the extent at page 56 does not
point to any page, for it is the last page in the index.

In this example, the number of out-of-order pages is zero.
Although the eighth and ninth pages are not physically
contiguous within the file, they are contiguous within the space
that has been allocated to the index, and that is what counts.
Thus, the external fragmentation for this example is zero.

SELECT IX.name AS 'Name'

 , PS.index_level AS 'Level'

 , PS.page_count AS 'Pages'

 , PS.avg_page_space_used_in_percent AS

 FROM sys.dm_db_index_physical_stats(

 DB_ID(),

 OBJECT_ID('Sales.SalesOrderDetail

 DEFAULT, DEFAULT, 'DETAILED') PS

 JOIN sys.indexes IX

 ON IX.OBJECT_ID = PS.OBJECT_ID AND IX.in

 WHERE IX.name = 'PK_SalesOrderDetail_Sales

GO

javascript:;
javascript:;

Zoom in | Open in new window

Figure 2 –Index with no external fragmentation

On the other hand, the Figure 3 shows the same table, but with
some out-of-order pages. The first three pages are logically
contiguous, but after that there is no correlation at all between
logical sequence and physical sequence.

Zoom in | Open in new window

Figure 3 –Index with external fragmentation

Any next-page pointer that does not point to the next physically
allocated page of the index is an out-of-order pointer; regardless
of whether it points forwards, backwards, within the extent,
across extents, or even across files.

To illustrate how to obtain external fragmentation information for
an index, we make two changes to our previous query.

Because external fragmentation concerns the relationship
between pages, but not the content of the pages, it can be
determined by scanning Level 1 of the index; rather than having
to scan the much larger leaf level of the index. We inform SQL
Server that a leaf level scan will not be necessary by changing
the function’s last parameter from DETAILED to LIMITED (or
DEFAULT).

javascript:;
javascript:;
javascript:;
javascript:;

Also, we modify the SELECT clause to include a slightly different
set of columns, those that provide external fragmentation
information.

The resulting query is shown in Listing 2:

Listing 2: A query to return external fragmentation

Because we specified LIMITED for the last parameter, we will get
only one row of output, shown in Figure 4:

Zoom in | Open in new window

Figure 4: Output to the external fragmentation query

The results tell us that our index is 1234 pages in size, consisting
of 20 fragments with an average size of 61.7 pages each. Just
as one cut through a piece of wood results in two pieces, and two
cuts results three pieces; one out-of-sequence next-page pointer
results in two fragments, two out-of-sequence next-page pointers
results in three fragments, and so on. Therefore, our index has
20-1 = 19 pages that have out-of-sequence next-page pointers.
On average, when scanning this index in logical sequence,
61contiguous pages will occur between each out-of-sequence
page. This is an index with very little external fragmentation.

Management studio’s Index Properties window, shown in Figure
5, obtains its information by doing a query similar to the one we
have been doing. It refers to internal and external fragmentation
by the terms Page fullness and Total fragmentation respectively.

Zoom in | Open in new window

Figure 5: SQL Server Management Studio’s Index Properties
window

SELECT IX.name AS 'Name'

, PS.index_level AS 'Level'

, PS.page_count AS 'Pages'

, PS.avg_fragmentation_in_percent AS 'Extern

, PS.fragment_count AS 'Fragments'

, PS.avg_fragment_size_in_pages AS 'Avg Frag

FROM sys.dm_db_index_physical_stats(

DB_ID(),

OBJECT_ID('Sales.SalesOrderDetail'),

DEFAULT, DEFAULT, 'LIMITED') PS

JOIN sys.indexes IX

ON IX.OBJECT_ID = PS.OBJECT_ID AND IX.index_

WHERE IX.name = 'PK_SalesOrderDetail_SalesOr

GO

javascript:;
javascript:;
javascript:;
javascript:;

What Causes Fragmentation
To discuss the cause of fragmentation, and the techniques for
avoiding and removing fragmentation, we must steal some
information from two upcoming topics of this Stairway:
information about creating / altering an index, and about inserting
rows into an indexed table.

As we cover this information, remember what was mentioned in
the background section of this Level; fragmentation is
undesirable only if your application is scanning an index; be it a
complete or partial scan. Fragmentation is not a problem when
your application is retrieving a small number of entries for a
single index key value; as in the five row query shown in Listing
3:

SELECT *

FROM Sales.SalesOrderDetail

WHERE SalesOrderID = 56080;

GO

Listing 3: A highly selective query

When you create or rebuild an index on a table that has been
populated, a reallocation of disk space occurs, resulting in an
index that has little or no external fragmentation. The amount of
internal fragmentation is determined the value you specify for the
FILLFACTOR option; which determines page fullness. No
attempt is made by SQL Server to preserve this page fullness
during subsequent data modifications. As rows are inserted into
a table, and the resulting entries are inserted into the index
pages, those pages will become ever fuller.

Eventually SQL Server may attempt to insert an entry into a page
that is already full. When this happens, SQL Server will search
its allocation structures to find an empty page. Once it has found
an empty page, it will do one of three things, each dependent on
the sequence in which new index keys are being inserted:

Random Sequence: Normally, SQL Server will move half the
entries (those of higher key value) from the full page to the empty
page, and then insert the new entry into the appropriate page,
thus producing two pages that are half full. This technique is
called page splitting, and is the reason why indexes of this type
are known as balanced tree indexes. Since there is little chance
that the new page is physically adjacent to the old page, there will
be an increase in external fragmentation. If your application
continues to insert, but not delete, rows; these two pages will
eventually grow from half full to full, where upon they will split into
pages that are half full. Over time, every page cycles from half
full to full, again and again; resulting in an internal fragmentation
(average page fullness) of approximately 75%.

Ascending Sequence: If, however, SQL Server notes that the
new entry would be the last entry on the full page, it will assume
that rows are being inserted into the table in the same sequence
as the index. In this scenario, if the index was created on the
LastName column; and a “Kimmel” entry is to be placed at the
end of the page, SQL Server assumes that the “Kimmel” row will
be followed by another “Kimmel” row, or perhaps a “Kinder” row.
Therefore, it places the new row, and only the new row, in the
empty page. If the table was empty when the inserts began, the
new page is the last page in the index, both logically and
physically. Thus, the external fragmentation remains near zero.
If SQL Server was correct in its assumption that rows are arriving

in index key sequence, a full page will never split. Once a page
becomes full, it stays full; resulting in little or no internal
fragmentation.

Descending Sequence: Conversely, if SQL Server notes that
the new entry would be the first entry on the full page, it will
assume that rows are being inserted into the table in descending
sequence. In this situation; SQL Server assumes that a “Kimmel”
row will be followed by another “Kimmel” row or perhaps a
“Kimato” row. Once again, it places the new row, and only the
new row, in the empty page. The increase in external
fragmentation is the same as for the random sequence scenario.
But the internal fragmentation is the same as the ascending
sequence scenario; at or near 100%.

Once new the entry is placed into a page, some cleanup must be
done. Four next-page / previous-page pointers, spread over
three pages, must be updated; and an entry pointing to the new
page must be inserted at the next higher level of the index;
which, in turn, might result in page split at that index level.

So, although page splitting is beneficial because it keeps the
index balanced, unnecessary page splitting should be avoided;
this topic will be covered later in this Level.

We can verify the three behaviors mentioned above with three
simple demos. Each one will use a simple two column table that
has an index on one column that you can create by running the
code in listing 4.

Listing 4: A simple table with 1 index

In each demo we insert 50,000 rows into the table in one of the
three possible sequences; random, ascending and descending.
At the end of each load, we view the fragmentation using the
query shown in Listing 5.

Listing 5: The fragmentation query

USE AdventureWorks;

GO

CREATE TABLE dbo.FragTest

(PKCol INT NOT NULL

, InfoCol NCHAR(64) NOT NULL

, CONSTRAINT PK_FragTest_PKCol PRIMARY KEY N

);

GO

SELECT IX.name AS 'Name'

, PS.index_level AS 'Level'

, PS.page_count AS 'Pages'

, PS.avg_page_space_used_in_percent AS 'Page

, PS.avg_fragmentation_in_percent AS 'Extern

, PS.fragment_count AS 'Fragments'

, PS.avg_fragment_size_in_pages AS 'Avg Frag

FROM sys.dm_db_index_physical_stats(DB_ID()

, DEFAULT, DEFAULT

, 'DETAILED') PS

JOIN sys.indexes IX

ON IX.OBJECT_ID = PS.OBJECT_ID AND IX.index_

WHERE IX.name = 'PK_FragTest_PKCol';

GO

