
Thank this author by sharing: 0

2010/02/02

ARTICLE

2009/08/07
FORUM

2013/03/28
FORUM

2013/04/16

FORUM

2016/10/18

BLOG

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Keep up to date -
daily newsletter:

your@email.com

Sign up

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Indexes with Included
Columns: Stairway to SQL
Server Indexes Level 5
By David Durant, 2011/07/13

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

The preceding levels introduced clustered and nonclustered
indexes, highlighting the following aspects of each:

There is always one entry in the index for each row in the table
(we noted that an exception to this rule will be covered in a
later level). These entries are always in index key sequence.
In a clustered index, the index entry is the actual row of the
table.
In a nonclustered index, the entry is separate from the data
row; and consists of the index key columns and a bookmark
value to map the index key columns to an actual row of the
table.

The last half of the previous sentence is correct but incomplete.
In this level we examine the option to include additional columns
to a non-clustered index, called included columns. In Level 6,
which examines Bookmark operations, we will see that SQL
Server might unilaterally add some columns to your index.

Included Columns
Columns that are in a nonclustered index, but are not part of the
index key, are called included columns. These columns are not
part of the key, and so do not impact the sequence of entries in
the index. Also, as we will see, they cause less overhead than
key columns.

When creating a nonclustered index, we specify the included
columns separately from the key columns; as shown in Listing
5.1.

Related Articles

Covering Index using Included
Columns

This article from Josef Richberg details
the benefits of included columns for use in
creating a cove...

Included Columns

Why not include every table field in the
included columns list for every index?

Indexes with Include

How does SQL select an index when you
have included columns

Database Design - What are
included columns with respect
to SQL Server indexing?

Database Design - What are included
columns with respect to SQL Server
indexing?

Mastering Index – Index with
included columns

This article is the part of series Mastering
Index, in this particular article we will be
explori...

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Stay up to date:

Daily newsletters with brand new
articles, scripts, editorials and a
Question of the Day help you keep
on top of SQL Server.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=355675&zid=15220&t=1522616092&auth=424e820ae7e5ffbfea0b65eecdea8bad
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72276%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=362444&zid=15491&t=1522616095&auth=14ffea667fb998203648fadd19090de7
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1063691.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/articles/69179/
http://www.sqlservercentral.com/Forums/FindPost763855.aspx
http://www.sqlservercentral.com/Forums/FindPost742705.aspx
http://www.sqlservercentral.com/Forums/FindPost866919.aspx
http://www.sqlservercentral.com/blogs/help-on-msbi/2016/10/18/mastering-index-index-with-included-columns/
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

Listing 5.1: Creating a nonclustered index with included
columns

In this example, ProductID and ModifiedDate are the index

key columns, and OrderQty,UnitPrice and LineTotal are

the included columns.

Had we not specified the INCLUDE clause in the above SQL

statement, the resulting index would have looked like this:

ProductID ModifiedDate Bookmark

Page n:

707 2004/07/25 =>

707 2004/07/26 =>

707 2004/07/26 =>

707 2004/07/26 =>

707 2004/07/27 =>

707 2004/07/27 =>

707 2004/07/27 =>

707 2004/07/28 =>

707 2004/07/28 =>

707 2004/07/28 =>

707 2004/07/28 =>

707 2004/07/28 =>

707 2004/07/28 =>

Page n+1:

707 2004/07/29 =>

707 2004/07/31 =>

707 2004/07/31 =>

707 2004/07/31 =>

708 2001/07/01 =>

708 2001/07/01 =>

708 2001/07/01 =>

708 2001/07/01 =>

708 2001/07/01 =>

708 2001/07/01 =>

708 2001/07/01 =>

708 2001/07/01 =>

708 2001/07/01 =>

708 2001/07/01 =>

However, having told SQL Server to include the OrderQty,

UnitPrice and LineTotal columns, the index looks like this:

:- Search Key Columns -: :--- Included

Columns ---: : Bookmark :

ProductID ModifiedDate OrderQty

 UnitPrice LineTotal

Page n-1:

707 2004/07/29 1

34.99 34.99 =>

707 2004/07/31 1

34.99 34.99 =>

707 2004/07/31 3

CREATE NONCLUSTERED INDEX FK_ProductID_ Modi

 ON Sales.SalesOrderDetail (ProductID

 INCLUDE (OrderQty, UnitPrice, LineTo

34.99 104.97 =>

707 2004/07/31 1

34.99 34.99 =>

708 2001/07/01 5

20.19 100.95 =>

Page n:

708 2001/07/01 1

20.19 20.19 =>

708 2001/07/01 1

20.19 20.19 =>

708 2001/07/01 2

20.19 40.38 =>

708 2001/07/01 1

20.19 20.19 =>

708 2001/07/01 2

20.19 40.38 =>

708 2001/12/01 7

20.19 141.33 =>

708 2001/12/01 1

20.19 20.19 =>

708 2002/01/01 1

20.19 20.19 =>

708 2002/01/01 1

 20.19 20.19 =>

708 2002/01/01 1

20.19 20.19 =>

Page n+1:

708 2002/01/01 2

20.19 40.38 =>

708 2002/01/01 5

20.19 100.95 =>

708 2002/02/01 1

20.19 20.19 =>

708 2002/02/01 1

20.19 20.19 =>

708 2002/02/01 2

20.19 40.38 =>

Examining the contents of this index shown, it is apparent that
the rows are ordered by the index key columns. The five rows for
product 708 with a modified date of January 1, 2002 (highlighted
in bold), for example, are contiguous in the index, as are the rows
every other ProductID/ ModifiedDate combination.

You might ask “Why even have included columns? Why not
simply add OrderQty,UnitPrice and LineTotal to the index

key?” There are several advantages in having these columns in
the index but not in the index key, such as:

Columns that are not part of the index key do not affect the
location of the entry within the index. This, in turn, reduces the
overhead of having them in the index. For instance, if the
ProductID or ModifiedDate value in the row is modified,

then that row’s entry must be relocated within the index. But,
if the UnitPricevalue in the row is modified, the index entry

still needs to be updated, but it does not need to be moved.
The effort required to locate an entry(s) in the index is less.
The size of the index will be slightly smaller.
The data distribution statistics for the index will be easier to
maintain.

Most of these advantages will be more meaningful in later levels,
when we look at the internal structures of indexes and at some
additional information that is maintained by SQL Server for
optimizing query performance.

Deciding whether an index column is part of the index key, or just
an included column, is not the most important indexing decision
you will ever make. That said, columns that frequently appear in
the SELECT list but not in the WHERE clause of a query are best

placed in the included columns portion of the index.

On Becoming a Covering Index
In Level 4, we expressed agreement with the designers of the
AdventureWorksdatabase regarding their decision to make
SalesOrderID/ SalesOrderDetailID the clustered index of

the SalesOrderDetail table. Most queries against this table

will request data ordered or grouped by sales order number.
However, a number of queries, perhaps from the warehouse staff,
will need information in product sequence. These are the queries
that will benefit from the index shown in Listing 5.1.

To illustrate the potential benefit of having the included columns
in that index, we will look at two queries against the
SalesOrderDetailtable, each of which we will execute three times,
as follows:

Run 1: No nonclustered index
Run 2: Using a nonclustered index that contains no included
columns (only the two key columns)
Run 3: Using the nonclustered index as defined in Listing 5.1

As we have done in previous levels, we again use number of
reads as the primary metric, but we also use SQL Server
Management Studio’s “Display Actual Execution Plan” option to
view the plan for each execution. This will give us an added
metric: the percentage of the workload that was spent on non-
read activity, such as matching up related data after they have
been read into memory. This gives us a better understanding of
the total cost of the query.

Testing the First Query: Activity totals
by product
Our first query, shown in Listing 5.2, is one that provides activity
totals by date for a specific product.

SELECT ProductID ,

 ModifiedDate ,

 SUM(OrderQty) AS 'No of Items' ,

 AVG(UnitPrice) 'Avg Price' ,

 SUM(LineTotal) 'Total Value'

FROM Sales.SalesOrderDetail

WHERE ProductID = 888

GROUP BY ProductID ,

 ModifiedDate ;

Listing 5.2: The "Activity totals by product" query

Since indexes can impact the performance of a query, but not the
results; executing this query against the three different indexing
schemes always yields the following row set:

ProductID ModifiedDate No of Rows Avg

Price Total Value

----------- ------------ ----------- --------

888 2003-07-01 16

602.346 9637.536000

888 2003-08-01 13

602.346 7830.498000

888 2003-09-01 19

602.346 11444.574000

888 2003-10-01 2

602.346 1204.692000

888 2003-11-01 17

602.346 10239.882000

888 2003-12-01 4

602.346 2409.384000

888 2004-05-01 10

 602.346 6023.460000

888 2004-06-01 2

602.346 1204.692000

The eight rows of output are aggregated from the thirty nine
‘ProductID = 888’ rows in the table to give one output row for

each date that had one-or-more ‘ProductID = 888’ sales.The

basic scheme for conducting our test is shown in Listing 5.3.
Before you run any queries, make sure you run SET

STATISTICS IO ON.

Listing 5.3: Testing the "Activity totals by product" query

IF EXISTS (SELECT 1

 FROM sys.indexes

 WHERE name = 'FK_ProductID_Mod

 AND OBJECT_ID = OBJECT_

 DROP INDEX Sales.SalesOrderDetail.FK_Pro

GO

--RUN 1: Execute Listing 5.2 here (no non-cl

CREATE NONCLUSTERED INDEX FK_ProductID_Modif

ON Sales.SalesOrderDetail (ProductID, Modifi

--RUN 2: Re-execute Listing 5.2 here (non-cl

IF EXISTS (SELECT 1

 FROM sys.indexes

 WHERE name = 'FK_ProductID_Mod

 AND OBJECT_ID = OBJECT_

 DROP INDEX Sales.SalesOrderDetail.FK_Pro

GO

CREATE NONCLUSTERED INDEX FK_ProductID_Modif

ON Sales.SalesOrderDetail (ProductID, Modifi

INCLUDE (OrderQty, UnitPrice, LineTotal) ;

--RUN 3: Re-execute Listing 5.2 here (non-cl

The relative effort required to execute the query against each
indexing scheme is shown in Table 5.1.

Run 1:

No Nonclustered
Index

Table 'SalesOrderDetail'. Scan count 1,
logical reads 1238.

Non read activity: 8%.

Run 2:

Index – No Included
Columns

Table 'SalesOrderDetail'. Scan count 1,
logical reads 131.

Non read activity: 0%.

Run 3:

With Included
Columns

Table 'SalesOrderDetail'. Scan count 1,
logical reads 3.

Non read activity: 1%.

Table 5.1: Results of running the first query three times with
different nonclustered indexes available

As you can see from these results:

Run 1 required a complete scan of the SalesOrderDetail

table; every row had to be read and examined to determine if it
should participate in the result or not.
Run 2 used the nonclustered index to quickly find the
bookmarks for just the 39 requested rows, but it had to retrieve
each of those rows individually from the table.
Run 3 found everything that it needed in the nonclustered
index, and in the most advantageous sequence –
ModifiedDate within ProductID. It jumped quickly to the

first requested entry, read 39 consecutive entries, doing the
aggregate calculations for each entry as it was read, and was
done.

Testing the Second Query: Activity
totals based on Date
Our second query is identical to the first, except for a change in
the WHERE clause. This time the warehouse is requesting

information based on date, rather than on product. We must filter
on the right-most search key column, ModifiedDate; rather

than the left-most column, ProductID. The new query is shown

in Listing 5.4.

SELECT ModifiedDate ,

 ProductID ,

 SUM(OrderQty) 'No of Items' ,

 AVG(UnitPrice) 'Avg Price' ,

 SUM(LineTotal) 'Total Value'

FROM Sales.SalesOrderDetail

WHERE ModifiedDate = '2003-10-01'

GROUP BY ModifiedDate ,

 ProductID ;

Listing 5.4: The "Activity totals by date" query

The resulting row set, in part, is:

ProductID ModifiedDate No of Items Avg

Price Total Value

----------- ------------ ----------- --------

------------- ----------------

 :

 :

782 2003-10-01 62

1430.9937 86291.624000

783 2003-10-01 72

 1427.9937 100061.564000

784 2003-10-01 52

1376.994 71603.688000

792 2003-10-01 12

1466.01 17592.120000

793 2003-10-01 46

1466.01 67436.460000

794 2003-10-01 37

1466.01 54242.370000

795 2003-10-01 22

1466.01 32252.220000

 :

 :

(164 row(s) affected)

The WHERE clause filtered the table down to 1492 qualifying rows;

which, when grouped, produced the 164 rows of output.

To run the tests, follow the same scheme as described in Listing
5.3, but using the new query from Listing 5.4. The results are The
relative effort required to execute the query against each indexing
scheme is shown in Table 5.2.

Run 1:

No Nonclustered Index

Table 'SalesOrderDetail'. Scan count 1,
logical reads 1238.

Non read activity: 10%.

Run 2:

With Index – No
Included Columns

Table 'SalesOrderDetail'. Scan count 1,
logical reads 1238.

Non read activity: 10%.

Run 3:

With Included Columns

Table 'SalesOrderDetail'. Scan count 1,
logical reads 761.

Non read activity: 8%.

Table 2: Results of running the second query three times
with different nonclustered indexes available

Both the first and second test resulted in the same plan; a
complete scan of theSalesOrderDetail table. For reasons

that were covered in detail in Level 4, the WHERE clause was not

sufficiently selective to benefit from a non-covering index. Also,
the rows comprising any one group are scattered throughout the
table. As the table was being read, each row had to be matched
to its group; and operation that consumes processor time and
memory.

The third test found everything that it needed in the nonclustered
index; but, unlike the previous query, it did not find the rows
located contiguously within the index. he rows that comprise
each individual group are contiguous within the index; but the
groups themselves are scattered over the length of the index.
Therefore, SQL Server scanned the index.

Scanning the index instead of the table had two advantages:

The index is smaller than the table, requiring less reads.

