
Thank this author by sharing: 0

2016/03/11

ARTICLE

2017/05/17

ARTICLE

2017/10/11

ARTICLE

2008/10/24
FORUM

2017/06/23

ARTICLE

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Keep up to date -
daily newsletter:

your@email.com

Sign up

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

An Introduction to SQL
Server Indexes: Stairway to
SQL Server Indexes Level
1
By David Durant, 2014/11/05 (first published: 2011/02/17)

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

This first level introduces SQL Server indexes: the database
objects that enable SQL Server to find and/or modify the
requested data in the minimum amount of time, using the fewest
system resource to achieve maximum performance. Good
indexes will also allow SQL Server to achieve maximum
concurrency so that queries run by one user will have little effect
on queries run by others. Finally, indexes provide an efficient way
of enforcing data integrity, by guaranteeing uniqueness of key
values when a unique index is created. This level is an
introduction; it covers concepts and usage, but leaves the
physical details to a later level.

A thorough understanding of indexes is important to the database
developer for one reason above all others: when a request to
SQL Server arrives from the client, SQL Server has only two
possible ways to access the requested rows:

It can scan every row in the table(s) containing the data,
starting at the first row and continuing to the last, examining
each row to see if it meets the request criteria.
Or, if a beneficial index is available, it can use the index to
locate the requested data.

The first option is always available to SQL Server. The second
option is only available if you have instructed SQL Server to
create a beneficial index, but it can result in significant
performance improvement, as we will illustrate later in this level.

Because indexes have overhead associated with them (they take
up space and they must be kept in sync with the tables), they are
not required by SQL Server. It is possible to have a database
with no indexes at all. It will probably perform very poorly and it

Related Articles

Stairway to ColumnStore
Indexes Level 7: Optimizing
Nonclustered Columnstore
Indexes

In this level, we will focus on optimization
techniques to apply while building the
nonclustered col...

Stairway to Columnstore
Indexes Level 12: Clustered or
Nonclustered?

The previous levels of this stairway
describe details, features, and limitations
of columnstore inde...

Deeper into Nonclustered
Indexes: Stairway to SQL Server
Indexes Level 2

By this stage, you should be familiar with
the basics of SQL Server indexes. We've
discussed what an...

index entry

index entry

Clustered Indexes: Stairway to
SQL Server Indexes Level 3

Now that we've seen the basics of
indexing, and taken a deeper dive into
Nonclustered Indexes, this ...

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=328527&zid=15220&t=1522615856&auth=c3f406917b4099dcf87d70819ac23a6f
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72284%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=362444&zid=15491&t=1522615856&auth=757203bd129bfc8e50ac540a7bdaec33
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1063688.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/articles/138566/
http://www.sqlservercentral.com/articles/157377/
http://www.sqlservercentral.com/articles/72286/
http://www.sqlservercentral.com/Forums/FindPost590412.aspx
http://www.sqlservercentral.com/articles/72351/
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

will definitely have data integrity issues, but SQL Server will allow
it.

However, it is not what we want. We all want a database that
performs well, has data integrity, and, at the same time, keeps
index overhead to a minimum. This level will start us toward that
goal.

The Sample Database
Throughout this StairWay we will use examples to illustrate the
crucial concepts. These examples are based upon the Microsoft
AdventureWorks sample database. We focus on Sales Order
functionality. Five tables will give us a good mix of transactional
and non-transactional data; Customer, SalesPerson, Product,
SalesOrderHeader, and SalesOrderDetail. To keep things
focused, we use a subset of the columns.

AdventureWorks is well normalized, so sales person information
is factored into three tables; SalesPerson, Employee and
Contact. For some examples, we will treat them as a single
table. The complete set of tables we will be using, and the
relationships between them, is shown in Figure 1.1.

Zoom in | Open in new window

Figure 1.1: The AdventureWorks tables that will be used in
this Stairway

Note:
All TSQL code shown in this Stairway Level can be
downloaded along with article (see the link at the
bottom of this article)

What is an Index?
We begin our study of indexes with a brief story, one that uses an
old, but proven technology, and one that we will refer to
throughout this article as we introduce the basic concepts of
indexes.

You leave your house to run a few errands. When
you return, you find a message from your
daughter’s softball coach waiting for you. Three of
the girls, Tracy, Rebecca, and Amy have lost their
team caps. Could you please swing by the Athletic
Products Store and buy caps for the girls. Their
parents will reimburse you at the next game.

You know the girls and you know their parents. But
you do not know their hat sizes. Somewhere in

javascript:;
javascript:;

your town are three residences, each containing a
piece of information that you need. No problem,
you’ll just call the parents and get the hat sizes.
You reach for your phone, and you reach for an
index – the white pages of your telephone
directory.

The first residence that you need to reach is that of
Helen Meyer. Estimating that “Meyer” will be
located near the middle of the population, you jump
to the middle of the white pages; only to discover
that you are at the page whose heading says
“Kline-Koerber”. You make a smaller jump forward
and reach the “Nagle-Nyeong” page. One even
smaller jump backwards puts you at the
“Maldonado-Nagle” page. Realizing that you are
now at the correct page, you scan down the page
till you reach the “Meyer, Helen” line and obtain the
telephone number. Using the phone number, you
reach the Meyer residence and obtain the
information you need.

You repeat the process two more times, reach two
other residences, and obtain two more hat sizes.

You have just used an index, and you have used it in much the
same way that SQL Server uses an index; for there are great
similarities, and some differences, between the white pages and
a SQL Server index.
Actually, the index you just used represents one type of SQL
Server index of the two that SQL Server supports: clustered and
nonclustered. The white pages best represents the concept of a
nonclustered index. Thus, in this level we introduce
nonclustered indexes. Subsequent levels will introduce clustered
indexes and drill ever deeper into both types.

Nonclustered Indexes
The white pages are analogous to a nonclustered index in that
they are not an organization of the data itself; but rather, a
mechanism, or map, to help you to access that data. The data
itself is the actual people we need to contact. The phone
company does not arrange the town’s residences into a
meaningful sequence, moving houses from one location to
another so that all girls on the same softball team live next door
to each other and the houses are not organized by residents’ last
name. Instead, it gives you a book containing one entry for each
residence. These entries are sequenced by the white pages’
search key; last name, first name, middle initial and street
address. Each entry contains the search key and the piece of
data that enables you to access the residence; the phone
number.

Like an entry the white pages, each entry in a SQL Server
nonclustered index consists of two parts:

The search key, such as last name – first name – middle
initial. . In SQL Server terminology, this is the index key.
The bookmark, which serves the same purpose as the phone
number does, allowing SQL Server to navigate directly to the
row in the table that corresponds to this index entry.

In addition, a SQL Server nonclustered index entry has some
internal-use-only header information and may contain some
optional information. Both of these will be covered in later levels;

neither is important at this time for an understanding of
nonclustered indexes.

Like the white pages, a SQL Server index is maintained in search
key sequence so that any specific entry can be accessed in set of
small “jumps”. Given the search key, SQL Server can quickly get
to the index entry for that key. Unlike the white pages, a SQL
Server index is dynamic. That is, SQL Server updates the index
every time a row is added, removed, or has a search key column
value modified.

Just as the sequence of entries in the white pages in not the
same as the geographic sequence of residences within the town;
the sequence of entries in the nonclustered index is not the same
as the sequence of rows in the table. The first entry in the index
might be that of the last row in the table, and the second entry in
the index might be that of the first row in the table. If fact, unlike
an index, whose entries are always in a meaningful sequence; a
table’s rows can be completely unsequenced.

When you create an index, SQL Server generates and maintains
exactly one entry in the index for each row in the underlying table
(an exception to this general rule will be encountered in a later
level when we cover filtered indexes). You can create more than
one nonclustered index on a table, but you cannot have an index
that contains data from more than one table.

And the biggest difference of all: SQL Server cannot use the
telephone. It must use the information in the bookmark portion of
the index entry to navigate to the corresponding row of the table.
This will be necessary whenever SQL Server needs any
information that is in the data row but not in corresponding index
entry, such as Tracy Meyer’s softball cap size. So, for a better
analogy, a white pages’ entry contains a set of GPS coordinates
instead of a phone number. You then use the GPS coordinates to
navigate to the residence represented by the white page entry.

Creating and benefiting from a Nonclustered Index

We end this level by twice querying our sample database. Make
sure you are using the version of AdventureWorks intended for
SQL Server 2005, which can be used by SQL Server 2008. The
AdventureWorks2008 database has a different table structure
and the queries below will fail. We will run the same query each
time; but the first execution will occur before we create an index
on the table, the second execution will be after we have created
an index. Each time, SQL Server will tell us how much work was
done in retrieving the requested information. We’ll be looking for
the “Helen Meyer” row in our Contact table (her row is located
near the middle of the table). Initially, the table will not have an
index on either the FirstName column or the LastName column.
To ensure you can run the example multiple times, make sure
that the index we will be building in the third batch does not exist,
by running the following code:

Listing 1.1 - Ensuring the index does not exist

Our task will require four SQL command batches.

The first command batch:

IF EXISTS (SELECT * FROM sys.indexes

WHERE OBJECT_ID = OBJECT_ID('Person.Contact

AND name = 'FullName')

DROP INDEX Person.Contact.FullName;

SET STATISTICS io ON

SET STATISTICS time ON

GO

Listing 1.2 - Turning on statistics

The above batch informs SQL Server that we want our queries to
return performance information as part of the output.

The second command batch:

SELECT *

 FROM Person.Contact

 WHERE FirstName = 'Helen'

 AND LastName = 'Meyer';

GO

Listing 1.3 - Retrieving some data

This second batch retrieves the “Helen Meyer” row:

584 Helen Meyer helen2@adventure-works.com 0-

519-555-0112

Plus the following performance information:

Table 'Contact'. Scan count 1, logical reads

569.

SQL Server Execution Times: CPU time = 3 ms.

This output informs us that our request performed 569 logical
IOs, and required approximately 3 milliseconds of processor time
to do so. Your values for processor time may be different.

The third command batch:

CREATE NONCLUSTERED INDEX FullName

 ON Person.Contact

 (LastName, FirstName);

GO

Listing 1.4 - Creating a non-clustered index

This batch creates a nonclustered composite index on the
Contact table’s first and last name columns. A composite index is
an index with more than one column determining the index row
sequence.

The fourth command batch:

SELECT *

 FROM Person.Contact

 WHERE FirstName = 'Helen'

 AND LastName = 'Meyer';

GO

Listing 1.3 (again)

This final batch is a re-execution of our original SELECT

statement. We get the same row returned as before; but this time
the performance statistics are different

Table 'Contact'. Scan count 1, logical reads 4.

SQL Server Execution Times: CPU time = 0 ms.

This output informs us that our request needed only 4 logical IOs;
and required an immeasurably small amount of processor time to
retrieve the “Helen Meyer” row.

Thank this author by sharing: 0

Conclusion
Creation of well-chosen indexes can greatly improve database
performance. In the next level we’ll begin to look at the physical
structure of indexes. We’ll examine why this nonclustered index
was so beneficial to this query, any why that might not always be
the case. Future levels will cover other types of indexes,
additional benefits of indexes, the costs associated with indexes,
monitoring and maintaining your indexes, and best practices; all
with the goal of providing you with the knowledge necessary to
create the best possible indexing scheme for your own tables in
your own databases.

Downloadable Code
Level 1 - IntroToIndexes_Durant_Code.sql
Level 1 - MillionRowContactTable.sql

Resources:
Level 1 - IntroToIndexes_Durant_Code.sql | Level 1 -
MillionRowContactTable.sql

This article is part of the Stairway to SQL Server Indexes
Stairway

Sign up to our RSS feed and get notified as soon as we publish a
new level in the Stairway!

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Total article views: 57933 | Views in the last 30 days: 59

http://www.sqlservercentral.com/Images/8349.sql
http://www.sqlservercentral.com/Images/8350.sql
http://www.sqlservercentral.com/Files/Level%201%20-%20IntroToIndexes_Durant_Code.sql/8349.sql
http://www.sqlservercentral.com/Files/Level%201%20-%20MillionRowContactTable.sql/8350.sql
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Xml/Rss/stairways
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1063688.aspx
javascript:;

