
Thank this author by sharing: 0

2009/03/14
FORUM

2016/04/12

ARTICLE

2015/12/10
BLOG

2012/07/06
FORUM

2014/10/03

FORUM

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Keep up to date -
daily newsletter:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Unique Indexes in SQL
Server: Stairway to SQL
Server Indexes Level 8
By David Durant, 2011/09/14

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

In this level we examine Unique Indexes. Unique indexes are
special in that they provide more than just a performance benefit;
they also provide a data integrity benefit. In SQL Server, unique
indexes are the only reasonable way to enforce primary key and
candidate key constraints.

Unique Indexes and Constraints
A unique index is no different than any other index, except that
multiple entries with the same index key value are prohibited.
Since each entry in an index maps to a row in the table,
preventing an entry from being added to the index prevents the
corresponding row from being added to the table. This is why
unique indexes are the enforcers of primary key and candidate
key constraints.

Declaring a PRIMARY KEY or UNIQUE constraint causes SQL
Server to automatically create an index. You can have a unique
index without having a matching constraint; but you cannot have
either of these constraints without having a unique index.
Defining the constraint will cause the index to be created, with the
index name being the same as the constraint name. You will be
unable to drop the index without first dropping the constraint, for
the constraint cannot exist without the index. Dropping the
constraint will cause its associated index to be dropped.

It is possible to have more than one unique index per table. The
AdventureWork’s Product table, for example, has four unique
indexes; one each on the ProductID, ProductNumber, rowguid,
and ProductNamecolumns. The designers of the
AdventureWorks database chose ProductID for the primary key;

Related Articles

Unique Constraint

Unique Constraint

Unique Indexes Are Code; Non-
Unique Indexes Are Data

Unique indexes are the database
developer's responsibility. Non-unique
indexes can be more easily ma...

Using unique constraints

I ran into an interesting problem the other
day. Given the title of the post, obviously a
unique co...

indexes (non-unique,clustered)

indexes (non-unique,clustered)

Unique index on multiple
column primary key (composite)

Create unique index on multiple column
for Full text index

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Stay up to date:

Daily newsletters with brand new
articles, scripts, editorials and a
Question of the Day help you keep
on top of SQL Server.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=328527&zid=15220&t=1522616185&auth=2017ed7bf14d19f40269900df4d5e3f0
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72440%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522616183&auth=02b89d7ff480b1238735c2c0749c4a33
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1082875.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Forums/FindPost672664.aspx
http://www.sqlservercentral.com/articles/110064/
http://www.sqlservercentral.com/blogs/sqlstudies/2015/12/10/using-unique-constraints/
http://www.sqlservercentral.com/Forums/FindPost986853.aspx
http://www.sqlservercentral.com/Forums/FindPost1020047.aspx
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

the other three are alternate keys, sometimes called candidate
keys.

You can create a unique index with either a CREATE INDEX
statement, as shown here:

Or by defining a constraint, as in:

In the first case, you are ensuring that no two products will ever
have the same name; in the second, you are ensuring that no two
products will have the same ProductID value.

Because defining a primary key or alternate key constraint
causes an index to be created, you must specify the necessary
index information in the constraint definition; hence the
“CLUSTERED” keyword in the ALTER TABLE statement shown
above.

If the table contains data that would violate the constraint or
violate the index restriction, the CREATE INDEX statement will
fail.

If the index can be created, then any subsequent DML (Data
Manipulation Language) statement that would violate the
constraint or index will fail. For example, suppose we try to insert
a row with a duplicate product name, as shown in Listing 1:

Listing 1: INSERT a duplicate value for product name

The statement fails to execute and we receive the following error
message:

CREATE UNIQUE NONCLUSTERED INDEX [AK_Produc

ON Production.Product ([Name]);

ALTER TABLE Production.Product

 ADD CONSTRAINT PK_Product_ProductID PRIMAR

 (

 ProductID);

INSERT Production.Product

(

Name, ProductNumber,

Color,

SafetyStockLevel, ReorderPoint, StandardCos

ListPrice, Size,

SizeUnitMeasureCode, WeightUnitMeasureCode,

DaysToManufacture, ProductLine, Class, Style

ProductSubcategoryID, ProductModelID,

SellStartDate, SellEndDate, DiscontinuedDate

)

VALUES

(

'Full-Finger Gloves, M', 'A unique product

'Black',

4, 3, 20.00, 40.00, 'M',

NULL, NULL, NULL,

0, 'M', NULL, 'U', 20, 3,

GETDATE(), GETDATE(), NULL

);

Msg 2601, LEVEL 14, State 1, Line 1

Cannot INSERT duplicate KEY row IN object 'P

The message informs us that our AK_Product_Name index has
successfully defended our table against an attempted insert of a
row that contains an already existing product name.
Primary Key or Unique Constraint or No Constraint at All

There are some small differences between a PRIMARY KEY
constraint and a UNIQUE constraint.

A PRIMARY KEY constraint prohibits NULLs; no index key
column of any index entry can contain a null. A UNIQUE
constraint does allow NULLs. However, since a UNIQUE
constraint treats two NULLs as duplicates of each other, only
one search key value containing NULLs in every column can
exist in the index.
Creating a PRIMARY KEY constraint results in the creation of
a clustered index unless either of the following is true:

The table already is a clustered index.
You specify NONCLUSTERED when you define the
constraint.

Creating a UNIQUE constraint results in a nonclustered index
unless you specify CLUSTERED when you define the
constraint and the table is not already clustered.
There can be only one PRIMARY KEY constraint per table.
There can be multiple UNIQUE constraints per table.

When deciding whether to create a unique constraint or just a
unique index, follow the guideline set down in the SQL Server
documentation in the MSDN library:

“There are no significant differences between creating a UNIQUE
constraint and creating a unique index that is independent of a
constraint. Data validation occurs in the same manner, and the
query optimizer does not differentiate between a unique index
created by a constraint or manually created. However, you should
create a UNIQUE constraint on the column when data integrity is
the objective. This makes the objective of the index clear.”

Combining a Unique Index with a
Filtered Index
The property of unique indexes mentioned above, that they allow
only one NULL, is often in conflict with a common business
requirement. Often, we would like to enforce uniqueness of
existing values in a column but allow multiple rows to have no
value at all for that column.

For instance, suppose you were a supplier of products, some of
which you obtain from third party vendors, and you keep your
product information in a table called ProductDemo. You have
your own ProductID value that you assign to all products. You
also track the UPC (Universal Product Code) value; but not all
vendors’ products have a UPC. Your table, in part, has the
values shown in Table 1:

ProductID

UPCode Other Columns

(Primary Key) (Unique, but not a key)

14AJ-W 036000291452

23CZ-M

23CZ-L

WITH UNIQUE INDEX 'AK_Product_Name'.

The statement has been terminated.

18MM-J 044000865867

Table 1: Partial contents of the ProductDemotable

In the second column, you need to enforce uniqueness of UPCs
while still allowing NULLs. The best way to provide this
functionality is to combine a unique index with a filtered index.
(Filtered indexes were the subject of Level 7, and were
introduced in SQL Server 2008.)

To illustrate this, we create a simple table containing the columns
shown above:

Now, when we insert the multiple NULL UPCode rows shown
below, all four rows are added to the table.

However, when we try to add a row with a duplicate UPCode
value:

We receive the following error message and the row is not
inserted.

Msg 2601, Level 14, State 1, Line 1
Cannot insert duplicate key row in object 'dbo.ProductDemo' with
unique index 'AK_UPCode'.
The statement has been terminated.

As it did in the earlier example in this level, our index has
provided the data integrity that we requested. But this time it also
allows multiple rows to have NULLs.
Choosing the Correct IGNORE_DUP_KEY Option

When you create a unique index, you have the option of
specifying the IGNORE_DUP_KEY option. Thus, our original
CREATE INDEX statement could have been worded:

The name of this option is slightly misleading, for a duplicate key
is never ignored when a unique index is present; more correctly,
a duplicate key is never allowed in a unique index. This option
controls a behavior that is applicable only during a multi-row
insert operation.

For instance, if you had two tables, TableA and TableB, that had
identical structure; you could submit the following INSERT
statement to SQL Server:

INSERT INTO TableA

SELECT *

FROM TableB;

CREATE TABLE ProductDemo

 (

 ProductID NCHAR(6) NOT NULL PRIMARY

 UPCode NCHAR(12) NULL

);

INSERT ProductDemo (ProductID , UPCode) VALU

, ('23CZ-M', NULL)

, ('23CZ-L', NULL)

, ('18MM-J', '044000865867');

INSERT ProductDemo (ProductID , UPCode) VALU

CREATE UNIQUE NONCLUSTERED INDEX AK_Product_

ON Production.Product ([Name])

WITH (IGNORE_DUP_KEY = OFF);

SQL Server would attempt to copy all the TableB rows into
TableA. What if two of the TableB rows could not be copied to
TableA because of duplicate values? Would you want all the
other rows to be copied, and only the two rows to fail; or would
you want the entire INSERT statement to fail?

The choice is yours to make. When you create the unique index,
you make the choice as to what should happen if an INSERT
statement attempts to add duplicate values to a unique key. The
two settings for IGNORE_DUP_KEY are interpreted as follows:

IGNORE_DUP_KEY = OFF

The entire INSERT statement will fail.
An error message will be issued.
Note: This choice is the default.

 IGNORE_DUP_KEY = ON

Only the rows with index key values that are duplicates of existing
rows will fail.

A warning message will be issued.

Note: This choice cannot be used if the unique index is also a
filtered index.

The IGNORE_DUP_KEY option only effects INSERT
statements. It is ignored by UPDATE, CREATE INDEX, and
ALTER INDEX statements. The IGNORE_DUP_KEY option can
also be specified when adding a PRIMARY KEY or UNIQUE
constraint to a table.

Why a Unique Index can Provide
Unexpected Benefit
Unique indexes can provide an unexpected performance benefit.
This is because they provide information to SQL Server that we
often take for granted, but which SQL Server can never assume.
Two of the unique indexes on the AdventureWork’s Product table,
ProductID and ProductName, provide an example of this.

Suppose, you receive a request from the warehouse staff for a
query that will show them the following information for each
product in the Product table:

The product name.
The count of the number of times this product has been sold.
The total value of those sales.

In response, you write the following query:

The warehouse staff is very pleased with your query, as it gives
them the results they wanted; one row per product, each row
containing the product name, sales count and total sales value.
This output is shown, in part, below:

Name RowCount TotalValue
---------------------------------- ----------- ----------------------------------
Sport-100 Helmet, Red 3083 157772.394392

SELECT [Name]

 , COUNT(*) AS 'RowCount'

 , SUM(LineTotal) AS 'TotalValue'

 FROM Production.Product P

 JOIN Sales.SalesOrderDetail D ON D.Produc

 GROUP BY ProductID

Sport-100 Helmet, Black 3007 160869.517836
Mountain Bike Socks, M 188 6060.388200
Mountain Bike Socks, L 44 513.000000
Sport-100 Helmet, Blue 3090 165406.617049
AWC Logo Cap 3382 51229.445623
Long-Sleeve Logo Jersey, S 429 21445.710000
Long-Sleeve Logo Jersey, M 1218 115249.214976
Long-Sleeve Logo Jersey, L 1635 198754.975360
Long-Sleeve Logo Jersey, XL 1076 95611.197080
HL Road Frame - Red, 62 218 394255.572400
:
:

You, however, are concerned about the potential cost of this
query. SalesOrderDetail is the larger of the two tables referenced
in the query; and its rows must be grouped by product name, a
value that is carried in the Product table, not the
SalesOrderDetail table.

Using SQL Server Management Studio, you note that the
SalesOrderDetail table is clustered on its primary key,
SalesOrderID / SalesOrderDetailID; which will not be of benefit
when trying to group rows by product name.

If you ran the code in Level 5 – Included Columns, you created
the following nonclustered index on the
SalesOrderDetail.ProductID foreign key column:

You feel that this index should help your query because it
contains all the information required by your query, except the
product name, and it is in ProductID sequence. But you are still
concerned about having to group information in one table by a
value that is in a different table.

You return to SQL Server Management Studio, turn on the Show
Actual Execution Plan option, run the query, and note the
execution plan shown in Figure 1. (Viewing and evaluating query
plans is the subject of Level 9).

Zoom in | Open in new window

Figure 1: Execution plan when grouping by Name

At first you are surprised to see that the Producttable’s product
name index, Product.AK_Product_Name, is never used, even
though its column is the aggregation key of the GROUP BY
clause. Then you realize that having a unique index on
Product.Name and a unique index on Product.ProductID informs
SQL Server that there is one product per product name and one

CREATE NONCLUSTERED INDEX FK_ProductID_Modif

ON Sales.SalesOrderDetail

(

ProductID,

ModifiedDate

)

INCLUDE

(

OrderQty,

UnitPrice,

LineTotal

);

javascript:;
javascript:;

product per product id. Therefore, GROUP BY [Name] or
GROUP BY ProductID is the same grouping; that is, they both
produce one group per product.

Thus, the query optimizer realized that your query was identical
to the query shown below; and, therefore, that the two ProductID
indexes would simultaneously support both joining and grouping
of the requested data.

SQL Server was able to simultaneously scan the covering index
on the SalesOrderDetail table and the clustered indexed Product
table, both of which are in ProductIDsequence; generate the
totals for each group; and merge in the product name; without
having to do any sorting or hashing. In short, SQL Server
generated the most efficient plan possible for your query.

If you drop the Product.AK_Product_Name index, like so:

The new query plan (shown below) is less efficient; requiring
additional sort and merge operations.

Zoom in | Open in new window

Figure 2: Execution plan when grouping by Name, after
dropping the index on Name

You can see that although the primary purpose of a unique index
is to provide for the integrity of your data, it can also help the
query optimizer determine the most efficient way to gather that
data, even if that index is not used to access the data.

Conclusion
Unique indexes provide support for primary key and alternate key
constraints. A unique index may exist with a corresponding
constraint, but a constraint cannot exist without its index,

A unique index can also be a filtered index. This allows for
enforcement of uniqueness of values in columns that permit
multiple NULLs within the column.

The IGNORE_DUP_KEY option influences the behavior of multi-
row insert statements.

A unique index can provide for better query performance, even if
the index is not used by the query.

SELECT[Name]

, COUNT(*)AS 'RowCount'

, SUM(LineTotal)AS 'TotalValue'

FROM Production.Product P

JOIN Sales.SalesOrderDetail D OND.ProductID=

GROUP BY ProductID

IF EXISTS (SELECT *

FROM sys.indexes

WHERE OBJECT_ID = OBJECT_ID(N'Production.Pro

AND name = N'AK_Product_Name')

DROP INDEX AK_Product_Name

ON Production.Product;

javascript:;
javascript:;

