
Docs / SQL / Relational databases / Security / Encryption

Always Encrypted (Database Engine)

In this article

THIS TOPIC APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse

Parallel Data Warehouse

 04/24/2017 • 13 minutes to read • Contributors

Typical Scenarios

How it Works

Selecting Deterministic or Randomized Encryption

Configuring Always Encrypted

Getting Started with Always Encrypted

Feature Details

Database Permissions

Example

See Also

Always Encrypted is a feature designed to protect sensitive data, such as credit card numbers or national

identification numbers (for example, U.S. social security numbers), stored in Azure SQL Database or SQL

Server databases. Always Encrypted allows clients to encrypt sensitive data inside client applications and

never reveal the encryption keys to the Database Engine (SQL Database or SQL Server). As a result,

Always Encrypted provides a separation between those who own the data (and can view it) and those

who manage the data (but should have no access). By ensuring on-premises database administrators,

cloud database operators, or other high-privileged, but unauthorized users, cannot access the encrypted

 Feedback Edit Share | Theme Light

Always Encrypted

FEEDBACK

https://docs.microsoft.com/en-us/
https://docs.microsoft.com/en-us/sql/index
https://docs.microsoft.com/en-us/sql/relational-databases/database-features
https://docs.microsoft.com/en-us/sql/relational-databases/security/security-center-for-sql-server-database-engine-and-azure-sql-database
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/sql-server-encryption
https://github.com/edmacauley
https://github.com/mairaw
https://github.com/om3n07
https://github.com/BYHAM
https://github.com/craigg-msft
https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/security/encryption/always-encrypted-database-engine.md
https://www.microsoft.com/

Typical Scenarios

Client and Data On-Premises

Client On-Premises with Data in Azure

Client and Data in Azure

data, Always Encrypted enables customers to confidently store sensitive data outside of their direct

control. This allows organizations to encrypt data at rest and in use for storage in Azure, to enable

delegation of on-premises database administration to third parties, or to reduce security clearance

requirements for their own DBA staff.

Always Encrypted makes encryption transparent to applications. An Always Encrypted-enabled driver

installed on the client computer achieves this by automatically encrypting and decrypting sensitive data

in the client application. The driver encrypts the data in sensitive columns before passing the data to the

Database Engine, and automatically rewrites queries so that the semantics to the application are

preserved. Similarly, the driver transparently decrypts data, stored in encrypted database columns,

contained in query results.

Always Encrypted is available in SQL Server 2016 and SQL Database. (Prior to SQL Server 2016 SP1,

Always Encrypted was limited to the Enterprise Edition.) For a Channel 9 presentation that includes

Always Encrypted, see Keeping Sensitive Data Secure with Always Encrypted.

A customer has a client application and SQL Server both running on-premises, at their business location.

The customer wants to hire an external vendor to administer SQL Server. In order to protect sensitive

data stored in SQL Server, the customer uses Always Encrypted to ensure the separation of duties

between database administrators and application administrators. The customer stores plaintext values of

Always Encrypted keys in a trusted key store which the client application can access. SQL Server

administrators have no access to the keys and, therefore, are unable to decrypt sensitive data stored in

SQL Server.

A customer has an on-premises client application at their business location. The application operates on

sensitive data stored in a database hosted in Azure (SQL Database or SQL Server running in a virtual

machine on Microsoft Azure). The customer uses Always Encrypted and stores Always Encrypted keys in a

trusted key store hosted on-premises, to ensure Microsoft cloud administrators have no access to

sensitive data.

A customer has a client application, hosted in Microsoft Azure (for example, in a worker role or a web

role), which operates on sensitive data stored in a database hosted in Azure (SQL Database or SQL Server

running in a virtual machine on Microsoft Azure). Although Always Encrypted does not provide complete

isolation of data from cloud administrators, as both the data and keys are exposed to cloud

https://channel9.msdn.com/events/DataDriven/SQLServer2016/AlwaysEncrypted

How it Works

administrators of the platform hosting the client tier, the customer still benefits from reducing the

security attack surface area (the data is always encrypted in the database).

You can configure Always Encrypted for individual database columns containing your sensitive data.

When setting up encryption for a column, you specify the information about the encryption algorithm

and cryptographic keys used to protect the data in the column. Always Encrypted uses two types of keys:

column encryption keys and column master keys. A column encryption key is used to encrypt data in an

encrypted column. A column master key is a key-protecting key that encrypts one or more column

encryption keys.

The Database Engine stores encryption configuration for each column in database metadata. Note,

however, the Database Engine never stores or uses the keys of either type in plaintext. It only stores

encrypted values of column encryption keys and the information about the location of column master

keys, which are stored in external trusted key stores, such as Azure Key Vault, Windows Certificate Store

on a client machine, or a hardware security module.

To access data stored in an encrypted column in plaintext, an application must use an Always Encrypted

enabled client driver. When an application issues a parameterized query, the driver transparently

collaborates with the Database Engine to determine which parameters target encrypted columns and,

thus, should be encrypted. For each parameter that needs to be encrypted, the driver obtains the

information about the encryption algorithm and the encrypted value of the column encryption key for

the column, the parameter targets, as well as the location of its corresponding column master key.

1

Next, the driver contacts the key store, containing the column master key, in order to decrypt the

encrypted column encryption key value and then, it uses the plaintext column encryption key to encrypt

the parameter. The resultant plaintext column encryption key is cached to reduce the number of round

trips to the key store on subsequent uses of the same column encryption key. The driver substitutes the

plaintext values of the parameters targeting encrypted columns with their encrypted values, and it sends

the query to the server for processing.

The server computes the result set, and for any encrypted columns included in the result set, the driver

attaches the encryption metadata for the column, including the information about the encryption

algorithm and the corresponding keys. The driver first tries to find the plaintext column encryption key in

the local cache, and only makes a round to the column master key, if it cannot find the key in the cache.

Next, the driver decrypts the results and returns plaintext values to the application.

A client driver interacts with a key store, containing a column master key, using a column master key

store provider, which is a client-side software component that encapsulates a key store containing the

column master key. Providers for common types of key stores are available in client side driver libraries

from Microsoft or as standalone downloads. You can also implement your own provider. Always

Selecting Deterministic or Randomized Encryption

Configuring Always Encrypted

Task SSMS PowerShell T-SQL

Provisioning column
master keys, column
encryption keys and

Yes Yes No

Encrypted capabilities, including built-in column master key store providers, vary by a driver library and

its version.

For details of how to develop applications using Always Encrypted with particular client drivers, see

Always Encrypted (client development).

The Database Engine never operates on plaintext data stored in encrypted columns, but it still supports

some queries on encrypted data, depending on the encryption type for the column. Always Encrypted

supports two types of encryption: randomized encryption and deterministic encryption.

Deterministic encryption always generates the same encrypted value for any given plain text

value. Using deterministic encryption allows point lookups, equality joins, grouping and indexing

on encrypted columns. However, but may also allow unauthorized users to guess information

about encrypted values by examining patterns in the encrypted column, especially if there is a

small set of possible encrypted values, such as True/False, or North/South/East/West region.

Deterministic encryption must use a column collation with a binary2 sort order for character

columns.

Randomized encryption uses a method that encrypts data in a less predictable manner.

Randomized encryption is more secure, but prevents searching, grouping, indexing, and joining

on encrypted columns.

Use deterministic encryption for columns that will be used as search or grouping parameters, for example

a government ID number. Use randomized encryption, for data such as confidential investigation

comments, which are not grouped with other records and are not used to join tables. For details on

Always Encrypted cryptographic algorithms, see Always Encrypted Cryptography.

The initial setup of Always Encrypted in a database involves generating Always Encrypted keys, creating

key metadata, configuring encryption properties of selected database columns, and/or encrypting data

that may already exist in columns that need to be encrypted. Please note that some of these tasks are not

supported in Transact-SQL and require the use of client-side tools. As Always Encrypted keys and

protected sensitive data are never revealed in plaintext to the server, the Database Engine cannot be

involved in key provisioning and perform data encryption or decryption operations. You can use SQL

Server Management Studio or PowerShell to accomplish such tasks.

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-client-development
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-cryptography

encrypted column
encryption keys with their
corresponding column
master keys.

Creating key metadata in
the database.

Yes Yes Yes

Creating new tables with
encrypted columns

Yes Yes Yes

Encrypting existing data
in selected database
columns

Yes Yes No

Getting Started with Always Encrypted

 Note

Make sure you run key provisioning or data encryption tools in a secure environment, on a computer

that is different from the computer hosting your database. Otherwise, sensitive data or the keys

could leak to the server environment, which would reduce the benefits of the using Always

Encrypted.

For details on configuring Always Encrypted see:

Configure Always Encrypted using SSMS

Configure Always Encrypted using PowerShell

Use the Always Encrypted Wizard to quickly start using Always Encrypted. The wizard will provision the

required keys and configure encryption for selected columns. If the columns, you are setting encryption

for, already contain some data, the wizard will encrypt the data. The following example demonstrates the

process for encrypting a column.

 Note

For a video that includes using the wizard, see Getting Started with Always Encrypted with SSMS.

1. Connect to an existing database that contains tables with columns you wish to encrypt using the

Object Explorer of Management Studio, or create a new database, create one or more tables with

columns to encrypt, and connect to it.

2. Right-click your database, point to Tasks, and then click** Encrypt Columns** to open the Always

Encrypted Wizard.

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/configure-always-encrypted-using-sql-server-management-studio
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/configure-always-encrypted-using-powershell
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-wizard
https://channel9.msdn.com/Shows/Data-Exposed/Getting-Started-with-Always-Encrypted-with-SSMS

Feature Details

3. Review the Introduction page, and then click Next.

4. On the Column Selection page, expand the tables, and select the columns that you want to

encrypt.

5. For each column selected for encryption, set the Encryption Type to either Deterministic or

Randomized.

6. For each column selected for encryption, select an Encryption Key. If you have not previously

created any encryption keys for this database, select the default choice of a new auto-generated

key, and then click Next.

7. On the Master Key Configuration page, select a location to store the new key, and select a master

key source, and then click Next.

8. On the Validation page, choose whether to run the script immediately or create a PowerShell script,

and then click Next.

9. On the Summary page, review the options you have selected, and then click Finish. Close the

wizard when completed.

Queries can perform equality comparison on columns encrypted using deterministic encryption,

but no other operations (for example, greater/less than, pattern matching using the LIKE

operator, or arithmetical operations).

Queries on columns encrypted by using randomized encryption cannot perform operations on

any of those columns. Indexing columns encrypted using randomized encryption is not

supported.

A column encryption key can have up to two different encrypted values, each encrypted with a

different column master key. This facilitates column master key rotation.

Deterministic encryption requires a column to have one of the binary2 collations.

After changing the definition of an encrypted object, execute sp_refresh_parameter_encryption

to update the Always Encrypted metadata for the object.

Always Encrypted is not supported for the columns with the below characteristics (for example, the

Encrypted WITH clause cannot be used in CREATE TABLE/ALTER TABLE for a column, if any of the

following conditions apply to the column):

Columns using one of the following datatypes: xml, timestamp/rowversion, image, ntext, text,

sql_variant, hierarchyid, geography, geometry, alias, user defined-types.

FILESTREAM columns

Columns with the IDENTITY property

Columns with ROWGUIDCOL property

String (varchar, char, etc.) columns with non-bin2 collations

https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-unicode-support
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-refresh-parameter-encryption-transact-sql

Columns that are keys for nonclustered indices using a randomized encrypted column as a key

column (deterministic encrypted columns are fine)

Columns that are keys for clustered indices using a randomized encrypted column as a key column

(deterministic encrypted columns are fine)

Columns that are keys for fulltext indices containing encrypted columns both randomized and

deterministic

Columns referenced by computed columns (when the expression does unsupported operations for

Always Encrypted)

Sparse column set

Columns that are referenced by statistics

Columns using alias type

Partitioning columns

Columns with default constraints

Columns referenced by unique constraints when using randomized encryption (deterministic

encryption is supported)

Primary key columns when using randomized encryption (deterministic encryption is supported)

Referencing columns in foreign key constraints when using randomized encryption or when using

deterministic encryption, if the referenced and referencing columns use different keys or algorithms

Columns referenced by check constraints

Columns in tables that use change data capture

Primary key columns on tables that have change tracking

Columns that are masked (using Dynamic Data Masking)

Columns in Stretch Database tables. (Tables with columns encrypted with Always Encrypted can be

enabled for Stretch.)

Columns in external (PolyBase) tables (note: using external tables and tables with encrypted

columns in the same query is supported)

Table-valued parameters targeting encrypted columns are not supported.

The following clauses cannot be used for encrypted columns:

FOR XML

FOR JSON PATH

The following features do not work on encrypted columns:

Transactional or merge replication

Distributed queries (linked servers)

Tool Requirements

SQL Server Management Studio can decrypt the results retrieved from encrypted columns if you

connect with the column encryption setting=enabled in the Additional Properties tab of the

Connect to Server dialog. Requires at least SQL Server Management Studio version 17 to insert,

update, or filter encrypted columns.

Database Permissions

Scenario

ALTER ANY
COLUMN
MASTER KEY

ALTER ANY
COLUMN
ENCRYPTION
KEY

VIEW ANY
COLUMN
MASTER KEY
DEFINITION

VIEW ANY
COLUMN
ENCRYPTION
KEY
DEFINITION

Key management
(creating/changing
/reviewing key
metadata in the
database)

X X X X

Querying
encrypted columns

X X

Encrypted connections from sqlcmd require at least version 13.1, which is available from the

Download Center.

There are four permissions for Always Encrypted:

ALTER ANY COLUMN MASTER KEY (Required to create and delete a column master key.)

ALTER ANY COLUMN ENCRYPTION KEY (Required to create and delete a column encryption key.)

VIEW ANY COLUMN MASTER KEY DEFINITION (Required to access and read the metadata of the

column master keys to manage keys or query encrypted columns.)

VIEW ANY COLUMN ENCRYPTION KEY DEFINITION (Required to access and read the metadata of

the column encryption key to manage keys or query encrypted columns.)

The following table summarizes the permissions required for common actions.

Important notes:

The permissions apply to actions using Transact-SQL, Management Studio (dialog boxes and

wizard), or PowerShell.

The two VIEW permissions are required when selecting encrypted columns, even if the user does

not have permission to decrypt the columns.

In SQL Server, both VIEW permissions are granted by default to the public fixed database role.

A database administrator may choose to revoke (or deny) the VIEW permissions to the public

role and grant them to specific roles or users to implement more restricted control.

http://go.microsoft.com/fwlink/?LinkID=825643

Example

Copy

See Also

CREATE COLUMN MASTER KEY MyCMK
WITH (
 KEY_STORE_PROVIDER_NAME = 'MSSQL_CERTIFICATE_STORE',
 KEY_PATH = 'Current User/Personal/f2260f28d909d21c642a3d8e0b45a830e79a1420'
);

CREATE COLUMN ENCRYPTION KEY MyCEK
WITH VALUES
(
 COLUMN_MASTER_KEY = MyCMK,
 ALGORITHM = 'RSA_OAEP',
 ENCRYPTED_VALUE = 0x01700000016C006F00630061006C006D0061006300680069006E0065002F006D00
);

CREATE TABLE Customers (
 CustName nvarchar(60)
 COLLATE Latin1_General_BIN2 ENCRYPTED WITH (COLUMN_ENCRYPTION_KEY = MyCEK,
 ENCRYPTION_TYPE = RANDOMIZED,
 ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256'),
 SSN varchar(11)
 COLLATE Latin1_General_BIN2 ENCRYPTED WITH (COLUMN_ENCRYPTION_KEY = MyCEK,
 ENCRYPTION_TYPE = DETERMINISTIC ,
 ALGORITHM = 'AEAD_AES_256_CBC_HMAC_SHA_256'),
 Age int NULL
);
GO

In SQL Database, the VIEW permissions are not granted by default to the public fixed

database role. This enables certain existing, legacy tools (using older versions of DacFx) to work

properly. Consequently, to work with encrypted columns (even if not decrypting them) a

database administrator must explicitly grant the two VIEW permissions.

The following Transact-SQL creates column master key metadata, column encryption key metadata, and a

table with encrypted columns. For information how to create the keys, referenced in the metadata, see:

Configure Always Encrypted using SSMS

Configure Always Encrypted using PowerShell

CREATE COLUMN MASTER KEY (Transact-SQL)

CREATE COLUMN ENCRYPTION KEY (Transact-SQL)

CREATE TABLE (Transact-SQL)

https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/configure-always-encrypted-using-sql-server-management-studio
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/configure-always-encrypted-using-powershell
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-column-master-key-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-column-encryption-key-transact-sql
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-transact-sql

column_definition (Transact-SQL)

sys.column_encryption_keys (Transact-SQL)

sys.column_encryption_key_values (Transact-SQL)

sys.column_master_keys (Transact-SQL)

sys.columns (Transact-SQL)

Always Encrypted Wizard

Migrate Sensitive Data Protected by Always Encrypted

Always Encrypted (client development)

Always Encrypted Cryptography

Configure Always Encrypted using SSMS Configure Always Encrypted using PowerShell

sp_refresh_parameter_encryption (Transact-SQL)

 Note

The feedback system for this content will be changing soon. Old comments will not be carried over.

If content within a comment thread is important to you, please save a copy. For more information on

the upcoming change, we invite you to read our blog post.

Conrad_B_Seelye Dec 4, 2017

Srimjam Jul 5, 2017

Sign in 14 people listening

How is it that you can execute a TSQL statement for "CREATE COLUMN ENCRYPTION KEY MyCEK ", but the
table above states that TSQL cannot be used for "Provisioning column master keys, column encryption keys and
encrypted column encryption keys with their corresponding column master keys."

Like Reply

Always Encrypted is introduced to get the data encrypted for even DBA's who can be potential reason for data-
leaks.

Though data is encrypted, DBA will use column encryption setting=enabled and can view all data. How is this
taken care , which is missing on whole documentation.

Like Reply

MarekFes Jul 13, 2017

6 Comments

+ Follow Post comment as...

https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-table-column-definition-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-column-encryption-keys-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-column-encryption-key-values-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-column-master-keys-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-columns-transact-sql
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-wizard
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/migrate-sensitive-data-protected-by-always-encrypted
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-client-development
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-cryptography
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/configure-always-encrypted-using-sql-server-management-studio
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/configure-always-encrypted-using-powershell
https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-procedures/sp-refresh-parameter-encryption-transact-sql
https://docs.microsoft.com/teamblog/a-new-feedback-system-is-coming-to-docs
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine
https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-database-engine

