
Thank this author by sharing: 0

2008/10/24
FORUM

2008/10/17

ARTICLE

2008/10/17

ARTICLE

2008/10/17

ARTICLE

2014/08/28

ARTICLE

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Index Statistics in SQL
Server: Stairway to SQL
Server Indexes Level 14
By David Durant, 2012/03/16

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

In Level 10, while explaining why an index needed a non-leaf
portion as well as a leaf portion, we said: “SQL Server, however,
has no intrinsic knowledge of English language last names, or of
any other data.” Thus, SQL Server does not know whether the
“Meyer, Helen” entries represent 50 percent, or .05 percent of the
entries in the index.

But it needs to know something about your data’s distribution;
because, as we have seen, the selectivity of the query is a major
factor in deciding whether an index should be used or not.
Therefore, for every index, SQL Server maintains a small amount
of information about the data values contained in the index key
columns. This information is called index statistics, or sometimes
just statistics, and it is the subject of this Level.

Statistics can also be generated for columns that do not appear
in an index. The structure of those statistics is identical to index
statistics. Since this Stairway is about indexes, all discussion will
refer to index statistics.

Index statistics are a bit like the engine in your car: It is nice to
know how it works internally, but more important is scheduling
regular preventive maintenance with someone who does know
how an engine works. We will cover both aspects if index
statistics in this Level; describing the internals of index statistics
and explaining when and why your statistics will need
maintenance.

The Structure of Index Statistics
Index statistics are divided into three parts; the header, density
vector, and histogram. To view the complete statistics for an
index, you can execute:

Related Articles

index entry

index entry

Index Statistics in SQL Server
7.0

A look at Index Statistics in SQL Server
7.0 and how to maintain them.

SQL Server 6.5: Index Statistic
Details

This article examines how index statistics
are used in SQL Server 6.5

SQL Server 6.5: Index Statistic
Details

This article examines how index statistics
are used in SQL Server 6.5

Clustered Columnstore Index
Gives "Unable to find index
entry" Error

The Clustered columnstore index
generates "unable to find index entry"
error and a memory dump after...

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=355875&zid=15220&t=1522616404&auth=5958fa093bc3d83f60485093aa982699
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72446%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=328526&zid=15491&t=1522616405&auth=f39c9d1abcb60de05d9339f18ee5ab71
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1137547.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Forums/FindPost590412.aspx
http://www.sqlservercentral.com/articles/312/
http://www.sqlservercentral.com/articles/396/
http://www.sqlservercentral.com/articles/446/
http://www.sqlservercentral.com/articles/113752/
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

DBCC SHOW_STATISTICS (tablename, indexname)

To view each part individually, execute:

DBCC SHOW_STATISTICS (tablename, indexname)

WITH STAT_HEADER

Or:

DBCC SHOW_STATISTICS (tablename, indexname)

WITH DENSITY_VECTOR

Or:

DBCC SHOW_STATISTICS (tablename, indexname)

WITH HISTOGRAM

But, before we can view statistics, we need a table and an index
to use as an example. Our sample table will consist of three
columns and two indexes; one index on the first two columns,
and one on the third column; as shown in Listing 1.

USE AdventureWorks;
GO

IF EXISTS (SELECT *
 FROM sys.objects
 WHERE name = 'HistogramTest'
AND type = 'U')
BEGIN
 DROP TABLE dbo.HistogramTest
END
GO
CREATE TABLE dbo.HistogramTest
 (
 Col1 int not null
 , Col2 int not null
 , Col3 int not null
)
GO

CREATE INDEX IX_HistogramTest
 ON dbo.HistogramTest
 (Col1, Col2)
CREATE INDEX IX_SingleValue
 ON dbo.HistogramTest
 (Col3)
GO

Listing 1: A Sample Table with Two Indexes

We also need some sample data; data with specific patterns to
help illustrate index statistics. We generate 5050 rows of this
sample data with the code shown in Listing 2.

SET NOCOUNT ON;
GO
DECLARE @maxLeftColumnValue int = 100;
DECLARE @leftColumnValue int = 0;
DECLARE @middleColumnValue int = 0;
DECLARE @rightColumnValue int = 0;
WHILE @leftColumnValue <
@maxLeftColumnValue
BEGIN
 SET @leftColumnValue += 1
 SET @middleColumnValue = 0
 WHILE @middleColumnValue <
@leftColumnValue
 BEGIN

 SET @middleColumnValue += 1
 SET @rightColumnValue += 1
 INSERT dbo.HistogramTest VALUES
(@leftColumnValue

 , @middleColumnValue

, @rightColumnValue)
 END
END
GO

Listing 2: The Sample Data Generator

The resulting sample data will have the following characteristics:

Each value that appears in Col1 will appear in as many
rows as the value. Thus, 1 will appear in one row, 2 will
appear in two rows; 3 will appear in three rows, and so on.

For any row, the combination of the Col1 - Col2 values is
unique within the table. That is, IX_HistogramTest could
have been specified as a unique index.

The values appearing in Col3 are also unique, starting at 1
and incrementing by 1 for each row thereafter. Thus,
IX_SingleValue also could have been a unique index.

For demonstration purposes, we create the table but not the
indexes; load the table; then create the indexes. This gives the
best load performance and ensures that our index statistics are
up-to-date.

Once we have loaded the table and created the indexes, we run
the queryshown in Listing 3, to verify that our sample data has
the characteristics mentioned above. The results, shown in
Figure 1, verify that our data has the specified three
characteristics.

And, because the results shown in Figure 1 are in Col1 - Col2
sequence, Figure 1, minus Col3, also represents a sample
portion of the IX_HistogramTest index.

SELECT TOP 20 Col1, Col2, Col3
 FROM dbo.HistogramTest
 ORDER BY Col1, Col2;

Listing 3: Query the Sample Data

Figure 1: A subset of our sample data

Density
One common term that you encounter when dealing with
statistics is density. Density is a measure of uniqueness of
values, and is directly related to selectivity; a term that we have
used in earlier levels. For example, an index key density of 0.01
means that are 1 / 0.01 = 100 different values in the index key. To
put it another way; each value occurs, on average, in 1 out of
every 100 entries. Density can be measured on individual
columns or on a composite of columns, such as Col1 – Col2.

If Figure 1 were the entire table, rather than a subset of the rows,
the density of Col1 would be 1 / 6 = 0.1667; while the density of
Col3 would be 1 / 20 = 0.05.

The smaller the density, the fewer the rows that will match an
equality comparison, and the more selective a WHERE clause

such as WHERE Col3 = 17 will be.

The Statistics Header
When we execute:

DBCC SHOW_STATISTICS('dbo.HistogramTest',

'IX_HistogramTest')

 WITH STAT_HEADER

We receive the index statistics header shown in Figure 2.

Zoom in | Open in new window

Figure 2: The Index Statistics Header

The header’s fields tell us the following:

Name: The name of the index is IX_HistogramTest.

Updated: The statistics were last updated April 18th at
2:16pm. (In our case, they were initially generated at that

javascript:;
javascript:;

time; they have never been updated.)

Rows: The number of entries in the index is 5050. This
number is always the number of entries in the index, not
the number of rows in the table. See the Unfiltered Rows
definition below.

Rows Sampled: The number of entries that were sampled
to generate these statistics is 5050. (More on sampling
later.)

Steps: The number of steps in the histogram portion of the
statistics is 59. (More on steps later.)

Density: This value is not used by SQL Server 2008 and
exists solely for backward compatability.

Average Key Length: The average length of the index key
values is 8. In our case, all the keys are fixed width of size
8 bytes; consisting of two 4 byte integers, Col1 and Col2.

String Index: These statistics do not include string
summary statistics. (More on string summary statistics
later.)

Filter Expression: This index was not created with a
FILTER clause specified.

Unfiltered Rows: The number of rows in the underlying
table is 5050. If this were a filtered index, this number
could be greater than the Rows value.

The Statistics Density Vector
When we execute:

DBCC SHOW_STATISTICS('dbo.HistogramTest',

'IX_HistogramTest')

 WITH DENSITY_VECTOR

We receive the index density vector shown in Figure 3.

Zoom in | Open in new window

Figure 3: The Index Statistics Density Vector

The density vector values shown in Figure 3 tell us:

Col1 averages 4 bytes in size, and contains 1 / 0.01 = 100
distinct values; the number that we would expect, given
the sample data generation code shown in Listing 2.

The composite of Col1 - Col2 is 8 bytes in size and
contains 1 / 0.0001980198 = 5050 distinct values; also a
number that we expect, for we said earlier that this value
would be unique across the index.

The Statistics Histogram
When we execute:

DBCC SHOW_STATISTICS('dbo.HistogramTest',

'IX_HistogramTest')

 WITH HISTOGRAM

javascript:;
javascript:;

We receive an index histogram; whose first 25 steps, out of 59,
are shown in Figure 4.

Zoom in | Open in new window

Figure 4: The first 25 steps of our Index Statistics Histogram

The histogram looks like a table with five columns. However, the
correct term for each item is step, not row. All the values in a
histogram are derived from values the left most column of the
index key. In the case of IX_HistogramTest, this column is Col1.
All other columns are ignored in the generation of a histogram.

Each step of a histogram spans, or represents, a consecutive set
(a range) of the index’s entries. A histogram will never have more
than 200 steps; regardless of the size of the table. Different steps
may span a different number of entries; perhaps with one step
being derived from 30 entries and the next step representing the
next 46 entries.

To help explain the individual values of a histogram, we define
the following four terms here; and illustrate them in Figure 5:

The left value of an index entry is the value contained in
the entry’s left most column. Thus, in our sample, this is
the value of Col1.

A step set is the set of consecutive index entries
represented by a step. All the values in a step’s five
columns are derived from the left values contained in the
step’s step set.

The upper subset of a step set is those entries whose left
value is equal to the highest left value found in the step
set.

The lower subset of a step set is those entries whose left
value is less than the highest left value found in the step
set.

For example, the index step set shown in Figure 5 generated the
Figure 4 step whose RANGE-HI-KEY value is 20.

Col1 Col2
---- ----
 :
 : End of Previous
18 17 Step Set
18 18 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

19 1 ------------- -------------
19 2 |
19 3 |
19 4 |
19 5 Lower |
19 6 |

javascript:;
javascript:;

19 7 |
19 8 |
19 9 Sub |
19 10 |
19 11 |
19 12 |
19 13 Set |
19 14 |
19 15 |
19 16 |
19 17 |
19 18 |
19 19 ------------ |
20 1 ------------ |
20 2 |
20 3
20 4 |
20 5 Upper |
20 6 |
20 7 |
20 8 |
20 9 |
20 10 Sub |
20 11 |
20 12 |
20 13 |
20 14 |
20 15 Set |
20 16 |
20 17 |
20 18 |
20 19 |
20 20 ------------ -------------

21 1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
21 2 Start of Next
 : Step Set
 :

Figure 5: A Step Set within an Index

Because this, our first sample, has only 100 different left values,
each step spans two or less left values. Later in this Level, when
we increase the sample’s row count by a multiple of 100, we will
see steps that span a much large range of left values.

The values in the five columns of a histogram, such as the one
shown in Figure 4, are calculated as follows:

Note: Since the first and third columns of the histogram are
derived from the step’s upper subset, we define them first. The
remaining three columns, derived from the step’s lower subset,
are defined last.

RANGE_HI_KEY:

The highest left value in the step’s step set. The
RANGE_HI_KEY value identifies the step; thus, two steps
will never have the same RANGE_HI_KEY value.

For the first step, RANGE_HI_KEY is the lowest left value
in the index. Thus, the first step always has an empty
lower subset. For the last step, RANGE_HI_KEY is the
highest left value in the index.

Steps are maintained, and displayed, in RANGE_HI_KEY
sequence.

