
Docs / SQL / Relational databases / Security

Dynamic Data Masking

In this article

THIS TOPIC APPLIES TO: SQL Server Azure SQL Database Azure SQL Data Warehouse

Parallel Data Warehouse

 09/26/2016 • 9 minutes to read • Contributors

Defining a Dynamic Data Mask

Permissions

Best Practices and Common Use Cases

Querying for Masked Columns

Limitations and Restrictions

Security Note: Bypassing masking using inference or brute-force techniques

Examples

See Also

Dynamic data masking limits (DDM) sensitive data exposure by masking it to non-privileged users. It can

be used to greatly simplify the design and coding of security in your application.

Dynamic data masking helps prevent unauthorized access to sensitive data by enabling customers to

designate how much of the sensitive data to reveal with minimal impact on the application layer. DDM

can be configured on the database to hide sensitive data in the result sets of queries over designated

database fields, while the data in the database is not changed. Dynamic data masking is easy to use with

 Feedback Edit Share | Theme Light

Dynamic Data Masking

FEEDBACK

https://docs.microsoft.com/en-us/
https://docs.microsoft.com/en-us/sql/index
https://docs.microsoft.com/en-us/sql/relational-databases/database-features
https://docs.microsoft.com/en-us/sql/relational-databases/security/security-center-for-sql-server-database-engine-and-azure-sql-database
https://github.com/edmacauley
https://github.com/TobiasBengtsson
https://github.com/rabryst
https://github.com/MightyPen
https://github.com/craigg-msft
https://github.com/MicrosoftDocs/sql-docs/blob/live/docs/relational-databases/security/dynamic-data-masking.md
https://www.microsoft.com/

Defining a Dynamic Data Mask

Function Description Examples

Default Full masking according to the data
types of the designated fields.

For string data types, use XXXX or
fewer Xs if the size of the field is
less than 4 characters (char, nchar,
varchar, nvarchar, text, ntext).

For numeric data types use a zero
value (bigint, bit, decimal, int,
money, numeric, smallint,

Example column definition syntax:

Phone# varchar(12)
MASKED WITH (FUNCTION =
'default()') NULL

Example alter syntax:

ALTER COLUMN Gender ADD
MASKED WITH (FUNCTION =
'default()')

existing applications, since masking rules are applied in the query results. Many applications can mask

sensitive data without modifying existing queries.

A central data masking policy acts directly on sensitive fields in the database.

Designate privileged users or roles that do have access to the sensitive data.

DDM features full masking and partial masking functions, as well as a random mask for numeric

data.

Simple Transact-SQL commands define and manage masks.

As an example, a call center support person may identify callers by several digits of their social security

number or credit card number, but those data items should not be fully exposed to the support person. A

masking rule can be defined that masks all but the last four digits of any social security number or credit

card number in the result set of any query. For another example, by using the appropriate data mask to

protect personally identifiable information (PII) data, a developer can query production environments for

troubleshooting purposes without violating compliance regulations.

The purpose of dynamic data masking is to limit exposure of sensitive data, preventing users who should

not have access to the data from viewing it. Dynamic data masking does not aim to prevent database

users from connecting directly to the database and running exhaustive queries that expose pieces of the

sensitive data. Dynamic data masking is complementary to other SQL Server security features (auditing,

encryption, row level security…) and it is highly recommended to use this feature in conjunction with

them in addition in order to better protect the sensitive data in the database.

Dynamic data masking is available in SQL Server 2016 and Azure SQL Database, and is configured by

using Transact-SQL commands. For additional information about configuring dynamic data masking by

using the Azure portal, see Get started with SQL Database Dynamic Data Masking (Azure portal).

A masking rule may be defined on a column in a table, in order to obfuscate the data in that column.

Four types of masks are available.

http://azure.microsoft.com/documentation/articles/sql-database-dynamic-data-masking-get-started/

smallmoney, tinyint, float, real).

For date and time data types use
01.01.1900 00:00:00.0000000 (date,
datetime2, datetime,
datetimeoffset, smalldatetime,
time).

For binary data types use a single
byte of ASCII value 0 (binary,
varbinary, image).

Email Masking method which exposes the
first letter of an email address and
the constant suffix ".com", in the
form of an email address. .

aXXX@XXXX.com .

Example definition syntax:

Email varchar(100)
MASKED WITH (FUNCTION =
'email()') NULL

Example alter syntax:

ALTER COLUMN Email ADD
MASKED WITH (FUNCTION =
'email()')

Random A random masking function for use
on any numeric type to mask the
original value with a random value
within a specified range.

Example definition syntax:

Account_Number bigint
MASKED WITH (FUNCTION =
'random([start range],
[end range])')

Example alter syntax:

ALTER COLUMN [Month] ADD
MASKED WITH (FUNCTION =
'random(1, 12)')

Custom String Masking method which exposes the
first and last letters and adds a
custom padding string in the
middle.

prefix,[padding],suffix

Note: If the original value is too
short to complete the entire mask,
part of the prefix or suffix will not
be exposed.

Example definition syntax:

FirstName varchar(100)
MASKED WITH (FUNCTION =
'partial(prefix,
[padding],suffix)') NULL

Example alter syntax:

ALTER COLUMN [Phone
Number] ADD MASKED WITH
(FUNCTION =
'partial(1,"XXXXXXX",0)')

Additional examples:

ALTER COLUMN [Phone
Number] ADD MASKED WITH
(FUNCTION =
'partial(5,"XXXXXXX",0)')

ALTER COLUMN [Social
Security Number] ADD
MASKED WITH (FUNCTION =
'partial(0,"XXX-XX-
",4)')

Permissions

Best Practices and Common Use Cases

Querying for Masked Columns

You do not need any special permission to create a table with a dynamic data mask, only the standard

CREATE TABLE and ALTER on schema permissions.

Adding, replacing, or removing the mask of a column, requires the ALTER ANY MASK permission and

ALTER permission on the table. It is appropriate to grant ALTER ANY MASK to a security officer.

Users with SELECT permission on a table can view the table data. Columns that are defined as masked,

will display the masked data. Grant the UNMASK permission to a user to enable them to retrieve

unmasked data from the columns for which masking is defined.

The CONTROL permission on the database includes both the ALTER ANY MASK and UNMASK

permission.

Creating a mask on a column does not prevent updates to that column. So although users

receive masked data when querying the masked column, the same users can update the data if

they have write permissions. A proper access control policy should still be used to limit update

permissions.

Using SELECT INTO or INSERT INTO to copy data from a masked column into another table

results in masked data in the target table.

Dynamic Data Masking is applied when running SQL Server Import and Export. A database

containing masked columns will result in a backup file with masked data (assuming it is exported

by a user without UNMASK privileges), and the imported database will contain statically masked

data.

Copy

SELECT c.name, tbl.name as table_name, c.is_masked, c.masking_function
FROM sys.masked_columns AS c
JOIN sys.tables AS tbl
 ON c.[object_id] = tbl.[object_id]
WHERE is_masked = 1;

Limitations and Restrictions

Security Note: Bypassing masking using inference or brute-
force techniques

Use the sys.masked_columns view to query for table-columns that have a masking function applied to

them. This view inherits from the sys.columns view. It returns all columns in the sys.columns view, plus

the is_masked and masking_function columns, indicating if the column is masked, and if so, what

masking function is defined. This view only shows the columns on which there is a masking function

applied.

A masking rule cannot be defined for the following column types:

Encrypted columns (Always Encrypted)

FILESTREAM

COLUMN_SET or a sparse column that is part of a column set.

A mask cannot be configured on a computed column, but if the computed column depends on

a column with a MASK, then the computed column will return masked data.

A column with data masking cannot be a key for a FULLTEXT index.

For users without the UNMASK permission, the deprecated READTEXT, UPDATETEXT, and

WRITETEXT statements do not function properly on a column configured for Dynamic Data

Masking.

Adding a dynamic data mask is implemented as a schema change on the underlying table, and

therefor cannot be performed on a column with dependencies. To work around this restriction,

you can first remove the dependency, then add the dynamic data mask and then re-create the

dependency. For example, if the dependency is due to an index dependent on that column, you

can drop the index, then add the mask, and then re-create the dependent index.

Dynamic Data Masking is designed to simplify application development by limiting data exposure in a set

of pre-defined queries used by the application. While Dynamic Data Masking can also be useful to

Copy

SELECT ID, Name, Salary FROM Employees
WHERE Salary > 99999 and Salary < 100001;

Id Name Salary

62543 Jane Doe 0

91245 John Smith 0

Examples

Creating a Dynamic Data Mask

Copy

CREATE TABLE Membership
 (MemberID int IDENTITY PRIMARY KEY,
 FirstName varchar(100) MASKED WITH (FUNCTION = 'partial(1,"XXXXXXX",0)') NULL,
 LastName varchar(100) NOT NULL,

prevent accidental exposure of sensitive data when accessing a production database directly, it is

important to note that unprivileged users with ad-hoc query permissions can apply techniques to gain

access to the actual data. If there is a need to grant such ad-hoc access, Auditing should be used to

monitor all database activity and mitigate this scenario.

As an example, consider a database principal that has sufficient privileges to run ad-hoc queries on the

database, and tries to 'guess' the underlying data and ultimately infer the actual values. Assume that we

have a mask defined on the [Employee].[Salary] column, and this user connects directly to the

database and starts guessing values, eventually inferring the [Salary] value of a set of Employees:

This demonstrates that Dynamic Data Masking should not be used as an isolated measure to fully secure

sensitive data from users running ad-hoc queries on the database. It is appropriate for preventing

accidental sensitive data exposure, but will not protect against malicious intent to infer the underlying

data.

It is important to properly manage the permissions on the database, and to always follow the minimal

required permissions principle. Also, remember to have Auditing enabled to track all activities taking

place on the database.

The following example creates a table with three different types of dynamic data masks. The example

populates the table, and selects to show the result.

 Phone# varchar(12) MASKED WITH (FUNCTION = 'default()') NULL,
 Email varchar(100) MASKED WITH (FUNCTION = 'email()') NULL);

INSERT Membership (FirstName, LastName, Phone#, Email) VALUES
('Roberto', 'Tamburello', '555.123.4567', 'RTamburello@contoso.com'),
('Janice', 'Galvin', '555.123.4568', 'JGalvin@contoso.com.co'),
('Zheng', 'Mu', '555.123.4569', 'ZMu@contoso.net');
SELECT * FROM Membership;

Copy

CREATE USER TestUser WITHOUT LOGIN;
GRANT SELECT ON Membership TO TestUser;

EXECUTE AS USER = 'TestUser';
SELECT * FROM Membership;
REVERT;

Adding or Editing a Mask on an Existing Column

Copy

ALTER TABLE Membership
ALTER COLUMN LastName ADD MASKED WITH (FUNCTION = 'partial(2,"XXX",0)');

Copy

ALTER TABLE Membership
ALTER COLUMN LastName varchar(100) MASKED WITH (FUNCTION = 'default()');

A new user is created and granted SELECT permission on the table. Queries executed as the TestUser

view masked data.

The result demonstrates the masks by changing the data from

1 Roberto Tamburello 555.123.4567 RTamburello@contoso.com

into

1 RXXXXXXX Tamburello xxxx RXXX@XXXX.com

Use the ALTER TABLE statement to add a mask to an existing column in the table, or to edit the mask on

that column.

The following example adds a masking function to th LastName column:

The following example changes a masking function on the LastName column:

