
Thank this author by sharing: 5

2016/03/11

ARTICLE

2010/08/02

FORUM

2013/12/15

FORUM

2016/03/07

BLOG

2017/12/29

BLOG

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Keep up to date -
daily newsletter:

your@email.com

Sign up

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Stairway to Columnstore
Indexes Level 12:
Clustered or
Nonclustered?
By Hugo Kornelis, 2017/05/24

The Series
This article is part of the Stairway Series: Stairway to
Columnstore Indexes

SQL Server 2012 and later offer a very different type of index
from the traditional b-tree, the in-memory columnstore index.
These indexes use a column-based storage model, as well as a
new 'batch mode' of query execution and can offer huge
performance increases for certain workloads. But how are they
built, how do they work, and why do they manage to have such a
dramatic impact on performance? In this stairway, Hugo Kornelis
explains all, with his usual mix of concise description and detailed
demonstration.

The previous levels of this stairway describe details, features,
and limitations of columnstore indexes in SQL Server. But they do
not answer what should be the first question for every database
professional: should columnstore indexes be used in my
databases; on what tables should they be used; and should they
be clustered or nonclustered columnstore indexes?

With SQL Server 2012, the latter question is not relevant; that
version has only nonclustered columnstore indexes, so you can
choose to use them or not. The limitations of this type of
columnstore index in SQL Server 2012 have made adoption
slow: many companies have chosen to forfeit the possible
performance and storage benefits because they feel it is not
worth the struggle to work around the limitations. In particular, the
read-only limitation on tables with columnstore indexes was often
seen as a huge problem. However, there are ways to alleviate
this pain somewhat, as we will show later in this level.

If you look at the marketing slides surrounding the release of SQL
Server 2014, or at the majority of blog posts and conference
presentations, you might get the impression that the clustered
columnstore index is so much better that it is the only choice, and
that the only reason for not removing the nonclustered version
from the product is backwards compatibility. That is not the case.
There are definitely some cases where, even on SQL Server
2014, I would prefer a nonclustered columnstore index over a
clustered one.

Related Articles

Stairway to ColumnStore
Indexes Level 7: Optimizing
Nonclustered Columnstore
Indexes

In this level, we will focus on optimization
techniques to apply while building the
nonclustered col...

how to create unique
nonclustered index on
partitioned table without
including partition column

how to create unique nonclustered index
on partitioned table without including
partition column

how to create unique
nonclustered index on
partitioned table without
including partition column

how to create unique nonclustered index
on partitioned table without including
partition column

Columnstore Indexes – part 79
(“Loading Data into Non-
Updatable Nonclustered
Columnstore”)

Continuation from the previous 78 parts,
the whole series can be found at
http://www.nikoport.com/co...

Columnstore Indexes – part 117
(“Clustered vs Nonclustered”)

Continuation from the previous 116 parts,
the whole series can be found at
http://www.nikoport.com/c...

Tags
columnstore index
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Stay up to date:

Daily newsletters with brand new
articles, scripts, editorials and a
Question of the Day help you keep
on top of SQL Server.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=355875&zid=15220&t=1522617004&auth=758b532ab715dc511318dd30c21ee908
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f157377%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522617002&auth=a4f89a60ffdc9efecdf29ff18e643698
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1876814.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/Hugo_Kornelis/264757/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/articles/138566/
http://www.sqlservercentral.com/Forums/FindPost962142.aspx
http://www.sqlservercentral.com/Forums/FindPost962125.aspx
http://www.sqlservercentral.com/blogs/nikos-blog/2016/03/07/columnstore-indexes-part-79-loading-data-into-non-updatable-nonclustered-columnstore/
http://www.sqlservercentral.com/blogs/nikos-blog/2017/12/29/columnstore-indexes-part-117-clustered-vs-nonclustered/
http://www.sqlservercentral.com/articles/ColumnStore+Index/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

In this level, we will help you choose whether or not to use
columnstore indexes, what tables to use them on, and what type
to choose, by presenting a short summary overview of the two
types of columnstore indexes, focusing on benefits, limitations,
and workarounds.

The sample database

All sample code in this level uses Microsoft’s
ContosoRetailDW sample database and builds upon the
code samples from the previous levels. If you didn’t follow
this stairway from the start, or if you did other tests in that
database and are now concerned that this might impact the
code in this level, you can easily rebuild the sample
database. First, download the Contoso BI Demo Database
from https://www.microsoft.com/en-
us/download/details.aspx?id=18279, choosing the
ContosoBIdemoBAK.exe option that contains a backup file.
After that, download the scripts attached to this article and
execute the one appropriate for your system (either SQL
Server 2012 or SQL Server 2014. If you are running SQL
Server 2016, I suggest using the 2014 version of this script;
keep in mind however that there have been significant
changes in this newer version so many of the demo scripts in
this stairway series will not work the same on SQL Server
2016. We will cover the changes in SQL Server 2016 in a
later level). Do not forget to change the RESTORE

DATABASE statement at the start: set the correct location of

the downloaded backup file, and set the location of the
database files to locations that are appropriate for your
system.

Once the script has finished, you will have a
ContosoRetailDW database in exactly the same state as
when you had executed all scripts from all previous levels.
(The only exceptions might be due to small variations in the
index creation process that are impossible to avoid).

The read-only limitation
A nonclustered columnstore index in SQL Server 2012 makes the
underlying table effectively read-only. In SQL Server 2014, the
clustered columnstore index does not have this effect, but the
nonclustered columnstore index still does. This can be a major
blocker in many situations. But let’s not forget that the primary
use case for columnstore indexes is for large tables in data
warehouses, and most data warehouses use partitioning on their
large fact tables in order to facilitate an easier data load process.
Exactly this partitioning makes it a lot easier to use nonclustered
columnstore indexes in data warehouses. And, although with
more effort, partitioning can also be used to work around the
read-only limitation in other situations.

The basic idea of this strategy is to order the fact table by, for
instance, the order entry date, or another generally increasing
column (e.g. an IDENTITY key column). New data is collected in

a staging table that has the same structure and the same
rowstore indexes as the fact table, but not the columnstore index
– so this table can still be changed. Once all data is collected, the
nonclustered columnstore index is added to the staging table; this
will take some time to complete, but far less then rebuilding the
columnstore index on the entire fact table would. After that, a
technique called “partition switching” (explained in more detail
below) is used to swap the data in the staging table with an

empty partition in the fact table. This operation, which takes just a
fraction of a second, effectively adds all data to the fact table and
empties the staging table – which is now ready for the next
iteration of the loading process.

There are basically two strategies to employ table partitioning as
a workaround for the read-only limitation of nonclustered
columnstore indexes:

1. Align the partition ranges to the data load frequency. This
means that if the ETL adds data to the data warehouse
daily, you need a partition for each day; if you want just
one partition per month you can load only once per
month.The drawback of this is that you need to choose
between infrequent data loads, or lots of partitions. This
can make the individual partitions so small that they
cannot fully benefit from columnstore indexes.

2. Do not align the data load frequency to the partition
ranges. So you can, for instance, load data every night,
but still use monthly partitions.In order to implement this
option, the load process has to be more complex. You
start by swapping the most recent partition with an empty
staging table, so that the data that was loaded before is in
the staging table; then drop the nonclustered columnstore
index on that staging table to make it updateable. After
that you run the ETL process (adding new rows, and
optionally even deleting or updating rows); then once
more create the nonclustered columnstore index and do
another partition swap to move the now updated data
back in. You will also need an additional conditional
branch in the ETL jobs to handle the less often occurring
creation of a new partition.

In the description above, I mention a staging table. This is how
you would typically use this technique in a pure data warehouse
scenario. However, if you want to employ a nonclustered
columnstore index on a very large table in an OLTP system, you
can replace all mentions of the work “staging table” with “working
table for current data”, and still use these techniques. A lot of
operations in an OLTP system only need to access the most
recent data, which would always be in the “working table for
current data”. Reports and searches across all data have to
combine the data in the working table with the data in the larger
table that holds the older information and has a columnstore
index. You might be tempted to create a single view that
combines the two tables with a UNION ALL expression and then

use that view in your reports and search queries; but beware that
this prevents batch mode execution on SQL Server 2012. In level
10 you will find the (unfortunately not so simple) workaround to
this issue.

Let’s first set up a version of our sample table that is partitioned.
The sample database used in this stairway is actually much too
small for this, so the end result will be very unrealistic. The
partitions span three months each, way more than I would want
for a real-world situation; and the number of rows per partition is
still so small that we will get limited performance benefits. But it
will at least work to illustrate the technique of incremental data
loading by partition swapping. Running the code in listing 12-1
will create a partitioned version of the table, load it with a copy of
the existing data, and create a nonclustered columnstore index
on it. It also creates the staging table that we will use to show the
data loading process.

http://www.sqlservercentral.com/articles/Stairway+Series/148676/

Listing 12-1: Create and fill a partitioned version of the
sample table

Note that this script takes a long time to run, depending on your
hardware it could be from five minutes to fifteen minutes or even
more. It will also cause the demo database to grow to
approximately 4 GB for the data file and 5.5 GB for the log file.
You then have a partitioned table with the same data as the
original FactOnlineSales table. It has a total of fourteen partitions;
both the first and last are empty. Keeping at least one empty
partition at each side of a partitioned table is a good idea,
because this allows you to quickly create new partitions by
splitting an empty partition.

The indexes have been modified to include the partitioning
column, which is a requirement for partition switching. Because of
this, the original primary key on the IDENTITY column can no

longer be enforced and has been left out. (Frankly, if I had
designed this table I would not have included an IDENTITY

USE ContosoRetailDW;

GO

-- Create the partition function for the lar

-- For this demo, partitions are three month

CREATE PARTITION FUNCTION pfDateKey (datetim

AS RANGE RIGHT

 FOR VALUES('20070101', '20070401', '20070

 '20080101', '20080401', '20080

 '20090101', '20090401', '20090

 '20100101');

-- Create the partition scheme

-- (Partition swapping requires all partitio

CREATE PARTITION SCHEME psDateKey

AS PARTITION pfDateKey ALL TO ([PRIMARY]);

-- Create a new version of the FactOnlineSal

CREATE TABLE dbo.FactOnlineSales_Partitioned

 (OnlineSalesKey int NOT NU

 DateKey datetime NOT NU

 StoreKey int NOT NU

 ProductKey int NOT NU

 PromotionKey int NOT NU

 CurrencyKey int NOT NU

 CustomerKey int NOT NU

 SalesOrderNumber nvarchar(20) NOT NU

 SalesOrderLineNumber int NULL,

 SalesQuantity int NOT NU

 SalesAmount money NOT NU

 ReturnQuantity int NOT NU

 ReturnAmount money NULL,

 DiscountQuantity int NULL,

 DiscountAmount money NULL,

 TotalCost money NOT NU

 UnitCost money NULL,

 UnitPrice money NULL,

 ETLLoadID int NULL,

d d i

column at all; in a data warehouse with a star schema they add
no value to the fact tables.)

With the partitioned table and the staging table in place, we can
now run through a demo script to see how a typical ETL process
might load new data into the staging table and then swap it into
the full table. This is demonstrated in listing 12-2:

Listing 12-2: Using partition swapping to work around the
read-only limitation

Only two steps in listing 12-2 take time. The simulated ETL
process takes the same time it would take in a regular rowstore
scenario, and rebuilding the columnstore index on the staging
table takes less time that it would to build or rebuild it on the
entire table. The actual partition swapping is instantaneous,
because SQL Server does this by merely swapping some
pointers instead of moving all the data around.

Note that in this example the CHECK constraint that is needed to

ensure that all data in the staging table is in the correct date

USE ContosoRetailDW;

GO

-- First, disable the columnstore index on t

ALTER INDEX NCI_FactOnlineSales_Staging

 ON dbo.FactOnlineSales_Staging DISABLE;

go

-- ===> START of simulation of the ETL job

-- (Simulated ETL: by using copy from Q1 of

INSERT INTO dbo.FactOnlineSales_Staging

SELECT DATEADD(year, 1, DateKey), Store

 CurrencyKey, CustomerKey, SalesO

 SalesQuantity, SalesAmount, Retu

 DiscountQuantity, DiscountAmount

 ETLLoadID, LoadDate, UpdateDate

FROM dbo.FactOnlineSales_Partitioned

WHERE DateKey >= '20090101'

AND DateKey < '20090401';

-- ===> END of simulation of the ETL job

GO

-- Rebuild the columnstore index on the now

ALTER INDEX NCI_FactOnlineSales_Staging

 ON dbo.FactOnlineSales_Staging REBUILD;

GO

-- Add a constraint to ensure we only have d

ALTER TABLE dbo.FactOnlineSales_Staging

ADD CONSTRAINT CK_Correct_Partition

 CHECK (DateKey >= '20100101' AND Dat

-- Split the empty tail-end partition into a

-- (receives data), and a new empty tail-end

ALTER PARTITION SCHEME psDateKey

 NEXT USED [PRIMARY];

ALTER PARTITION FUNCTION pfDateKey()

 SPLIT RANGE ('20100401');

range was added after the data was loaded and the columnstore
index was already built. For a data warehouse with data load
from a trusted source, this is the fastest way to handle this.
However, if you use the staging table as a working table for
current data in an OLTP scenario, the CHECK constraint should

always be in place to prevent incorrect data from being stored in
this table.

If you have a scenario that allows you to do your ETL as
illustrated above, then you might find that a nonclustered
columnstore index can be interesting on SQL Server 2012
despite the read-only limitation. And even on SQL Server 2014,
this ETL trick might convince you to choose the nonclustered
columnstore index over the clustered version.

Supported data types
Another important consideration to keep in mind when choosing
between a clustered or a nonclustered columnstore index on SQL
Server 2014 is the long list of restrictions on what columns can be
allowed in columnstore indexes. For instance, computed columns
or columns defined with the SPARSE attribute are not permitted in

a columnstore index, and several data types are not allowed
either.

Since a clustered columnstore index always includes all columns
in the table, any column that is not permitted makes it impossible
to create a clustered columnstore index on that table; however,
you can still create a nonclustered columnstore index as long as
you restrict the list of columns in the index to only those with a
permitted data type. The code in listing 12-3 illustrates this
difference:

USE ContosoRetailDW;

GO

CREATE TABLE dbo.TestDatatypes

 (KeyCol int NOT NULL,

 DataCol_Supported varchar(500) NOT NULL,

 DataCol_Unsupported varchar(max) NOT NUL

GO

-- Fails because of unsupported data type

CREATE CLUSTERED COLUMNSTORE INDEX ccix_Test

 ON dbo.TestDataTypes;

GO

-- Fails because of unsupported data type

CREATE NONCLUSTERED COLUMNSTORE INDEX ncix_T

 ON dbo.TestDataTypes(KeyCol, DataCol_Sup

GO

-- Succeeeds because unsupported column is n

CREATE NONCLUSTERED COLUMNSTORE INDEX ncix_T

 ON dbo.TestDataTypes(KeyCol, DataCol_Sup

GO

DROP TABLE dbo.TestDataTypes;

GO

Listing 12-3: Including only supported columns in a
nonclustered columnstore index

If you run the code in listing 12-3 statement by statement, you will
see that you get an error message when trying to create the
clustered columnstore index. The first attempt to create a
nonclustered columnstore index also fails, because it includes a
column that uses a data type that is not supported for
columnstore indexes. However, for the nonclustered columnstore
index we at least have the option to omit that column from the
column list and successfully create a nonclustered columnstore
index on the other columns in the table. With a clustered
columnstore index, we do not have that option; so if we really
want to create a columnstore index on this table without losing
the ability to update data, we will have to change the database
design (e.g. by changing the data type, or by moving the
offending column out to a separate table).

Modifications
If you followed along with the examples in level 5 and level 6, you
will have realized that changing the data in a clustered
columnstore index comes at a price. New data is added into an
open deltastore, which is compressed when “full”; the data in it is
probably not optimal for rowgroup elimination. Depending on your
data load pattern you also run the risk of getting too many
rowgroups with too few rows each. Deleting data, but also
changing data, logically removes the rows from the compressed
rowgroups, but the data is not physically removed. Remember
that one of the reasons for the speed of columnstore indexes is
the reduced I/O because of the compression – but if a large
enough percentage of the compressed data is logically removed,
we are actually doing more I/O instead of less to get the same
amount of data. For example, let’s say you have 100 GB of data,
and the columnstore index reduces the storage size to just 15
GB. But if you then delete 90% of your data, the columnstore
index will still take up 15 GB, even though the uncompressed
data size would now be 10 GB. And because updates are
implemented as DELETE followed by INSERT, you would see
similar patterns on tables that have lots of UPDATE operations.

In level 8 you saw that a reorganize operation does not address
these issues. A rebuild of the index does physically remove the
logically deleted data, at the price of using more time and
resources. If you also want to optimize for rowgroup elimination,
you will have to invest even deeper: you need to replace the
clustered columnstore index with a clustered rowstore index, and
then replace that once more with the original clustered
columnstore index. This effectively means two full index rebuilds
in succession (and the second rebuild must be forced to avoid
parallelism if you want the best possible optimization).

If you really need the ability to continuously update data in a table
and still want the benefits of a columnstore index on that table,
then these issues are the price you have to pay. But if that price
is too high, you might want to consider using a nonclustered
columnstore index as the alternative. If you are able to set up a
partitioning scheme that allows you to use the partition switching
technique described earlier, you’ll never have to reorganize or
rebuild the columnstore index; you only create the columnstore
index once for each partition. But nothing comes for free, in this
case the price is a much clumsier update process, and having to
write a more complex query if you also want to include the most
recent data without losing batch mode execution.

http://www.sqlservercentral.com/articles/Stairway+Series/133133/
http://www.sqlservercentral.com/articles/Stairway+Series/136174/
http://www.sqlservercentral.com/articles/clustered+index/139099/

