
Thank this author by sharing: 0

2014/07/20

BLOG

2015/02/18

BLOG

2017/06/25

BLOG

2015/07/11
BLOG

2016/06/20

BLOG

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Stairway to Columnstore
Indexes Level 4: Catalog
Views
By Hugo Kornelis, 2015/08/05

The Series
This article is part of the Stairway Series: Stairway to
Columnstore Indexes

SQL Server 2012 and later offer a very different type of index
from the traditional b-tree, the in-memory columnstore index.
These indexes use a column-based storage model, as well as a
new 'batch mode' of query execution and can offer huge
performance increases for certain workloads. But how are they
built, how do they work, and why do they manage to have such a
dramatic impact on performance? In this stairway, Hugo Kornelis
explains all, with his usual mix of concise description and detailed
demonstration.

If you need to find information about columnstore indexes in your
database, you can use the tools and options in SQL Server
Management Studio. But it is generally easier (once you’ve
climbed the learning curve) to get the information you need by
directly querying the catalog views – and as a bonus, this
metadata exposes additional information that cannot be
accessed from the Management Studio GUI.

In this level, we will first take a look at how to recognize
columnstore indexes in some of the generic catalog views. After
that we will investigate the new catalog views that have been
added just for columnstore indexes.

Preparation
In the previous levels, I have used only a nonclustered
columnstore index in the sample code, so that readers who have
not yet upgraded to SQL Server 2014 can still follow along. But in
this level I want to show how both types of columnstore index are
shown in the catalog views, so I will now create a clustered
columnstore index as well. Readers using SQL Server 2012 can
still follow along, but they will have to skip the first listing, and
they will obviously not get the output related to the clustered
columnstore index.

The code in this level is all based on the ContosoRetailDW
database as it was after the first level, so after restoring the
original database and creating the nonclustered columnstore
index. The code in listing 4-1 creates a copy of the
FactOnlineSales table, called FactOnlineSales2, and creates a

Related Articles

Clustered Columnstore Indexes
– part 34 (“Deleted Segments
Elimination”)

Continuation from the previous 33 parts,
starting from
http://www.nikoport.com/2013/07/05/clustered-

Clustered Columnstore Indexes
– part 48 (“Improving Dictionary
Pressure”)

Continuation from the previous 47 parts,
starting from
http://www.nikoport.com/2013/07/05/clustered-

Columnstore Indexes – part 107
(“Dictionaries Deeper Dive”)

Continuation from the previous 106 parts,
the whole series can be found at
http://www.nikoport.com/c...

COLUMNSTORE INDEX… DEMO

COLUMNSTORE INDEX How data is
stored in traditional way For physical
storage of a table, its rows...

Columnstore Indexes – part 84
(“Practical Dictionary Cases”)

Continuation from the previous 83 parts,
the whole series can be found at
http://www.nikoport.com/co...

Tags
catalog views
columnstore index
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Stay up to date:

Daily newsletters with brand new
articles, scripts, editorials and a
Question of the Day help you keep
on top of SQL Server.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=328527&zid=15220&t=1522616793&auth=ca578543f2315bba9339c7ba9134b46d
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f128989%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=362444&zid=15491&t=1522616796&auth=7a317b87afe7f7f6747e2915443909c0
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1703048.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/Hugo_Kornelis/264757/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/blogs/nikos-blog/2014/07/20/clustered-columnstore-indexes-part-34-deleted-segments-elimination/
http://www.sqlservercentral.com/blogs/nikos-blog/2015/02/18/clustered-columnstore-indexes-part-48-improving-dictionary-pressure/
http://www.sqlservercentral.com/blogs/nikos-blog/2017/06/25/columnstore-indexes-part-107-dictionaries-deeper-dive/
http://www.sqlservercentral.com/blogs/sqlserversdba/2015/07/11/columnstore-index-demo/
http://www.sqlservercentral.com/blogs/nikos-blog/2016/06/20/columnstore-indexes-part-84-practical-dictionary-cases/
http://www.sqlservercentral.com/articles/Catalog+Views/
http://www.sqlservercentral.com/articles/ColumnStore+Index/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

clustered columnstore index on it. Note that creating the index
this way will probably not result in the best possible performance;
we will look at better ways in a later level.

Listing 4-1: Creating a table with a clustered columnstore
index

After running this code, you will now have two tables:
FactOnlineSales, with a nonclustered columnstore index
NCI_FactOnlineSales; and FactOnlineSales2, with a clustered
columnstore index CCI_FactOnlineSales2. Readers who are
using SQL Server 2012 will have only the first of these two tables,
and hence only the nonclustered columnstore index.

Generic catalog views
You can find information about indexes in two generic catalog
views: sys.indexes and sys.index_columns. The code in listing 4-
2 queries these two views for just the two existing columnstore
indexes, and figure 4-1 shows partial results on my system. The
full output of the second query is 42 rows: 2 tables, 21 columns in
each, and all of them are included in the indexes.

Listing 4-2: Querying index and index columns information

Zoom in | Open in new window

Figure 4-1: Index and index columns information

USE ContosoRetailDW;

GO

SELECT *

INTO dbo.FactOnlineSales2

FROM dbo.FactOnlineSales;

CREATE CLUSTERED COLUMNSTORE INDEX CCI_FactO

ON dbo.FactOnlineSales2;

USE ContosoRetailDW;

GO

SELECT i.*

FROM sys.indexes AS i

WHERE i.name IN (N'NCI_FactO

 N'CCI_FactO

--WHERE i.object_id IN (OBJECT_ID

-- OBJECT_ID

--AND i.type IN (5, 6);

SELECT ic.*

FROM sys.index_columns AS ic

INNER JOIN sys.indexes AS i

 ON i.object_id = ic.object_id

 AND i.index_id = ic.index_id

WHERE i.name IN (N'NCI_FactO

 N'CCI_FactO

javascript:;
javascript:;

Both these views existed before columnstore indexes were
added in SQL Server 2012, and no new columns have been
added to them. The range of possible values for the columns type
and type_desc in sys.indexes has been expanded, however: type
6 with description NONCLUSTERED COLUMNSTORE was

introduced in SQL Server 2012; in SQL Server 2014, type 5 with
description CLUSTERED COLUMNSTORE was added. Many of the

columns in this table are not used for columnstore indexes and
are therefore always 0 when the index is a columnstore.

The data returned from sys.index_columns is pretty useless by
itself; you will usually want to join it to other catalog views such as
sys.objects, sys.indexes, and sys.columns to translate the
object_id, index_id, and column_id values in the names of the
table, index, and column. But even then, this data is still rather
uninteresting for columnstore indexes. There will always be one
row for each column in the index, and each column will be
marked as an included column. This is strictly speaking not
entirely true, as the concept of “included” columns is very much
tied to the design of rowstore indexes. But within the design of
this catalog view, this was probably the best Microsoft could have
done without changing the view and potentially breaking existing
applications that rely on this view.

Filter on index name or table name?

The queries in listing 4-2, as well as the queries in the rest of
this article, all filter based on the name of the columnstore
index. Unless your company has a very strict naming policy,
chances are that you do know the table name, but do not
know the index name. In that case, you can use the
alternative form of the filter shown as a comment in the first
query in listing 4-2. Keep in mind that this second form of the
query will return information on all indexes, not just the
columnstore indexes, if you remove the additional filter on
the type column.If you use the same alternative for the
sys.index_columns table, you can use the object_id column
from that table instead of the object_id from sys.indexes –
and if you also decide not to filter on type, you can then even
remove the join to sys.indexes.

Information on segments
When Microsoft implemented columnstore indexes, they did not
just add new values for some columns in existing catalog views;
they implemented several completely new catalog views as well,
designed to give insight in the specific columnstore features. Two
of these were released in SQL Server 2012; one more was
added in SQL Server 2014. One of the two views available since
the first release of columnstore indexes is
sys.column_store_segments, which (as the name implies) gives
detailed information about the individual segments within the
columnstore index.

As with most catalog views, you need to join this view to others to
get useful information in a readable format. This is actually quite
tricky for this view. As you can see in listing 4-3, a lot of additional
catalog views need to be joined in to get useful results. This
listing also includes a filter on the specific indexes that we are
interested in. In this case that WHERE clause doesn’t have much

effect because we have no other columnstore indexes in the
demo database. But I wanted to show how you can easily focus
on specific tables even in a database that has more tables with
columnstore indexes.

Listing 4-3: Querying segment information

Zoom in | Open in new window

Figure 4-2: Segment information

Remember that when the index was built, the data was first
divided into rowgroups of about a million rows each. On my SQL
Server 2014 system, the nonclustered columnstore index uses 15
rowgroups and the clustered columnstore index is 16 rowgroups
(results may vary on your system!) These rowgroups were then
further divided into segments for each of the 21 columns. Which
is why on my system, the full results of listing 4-3 is 651 rows: 15
* 21 for the nonclustered columnstore index, plus 16*21 for the
clustered columnstore.

To identify a single segment, you need to know the rowgroup and
the column name. Rowgroups are identified by a zero-based
counter, which is stored in this view in the badly named column
segment_id. The row_count column should not actually have
been in this view, because it stores the number of rows in the
rowgroup. So it will be the same for each segment of the
rowgroup. However, for monitoring and troubleshooting it can be
very convenient to have this number available directly in this
view.

USE ContosoRetailDW;

GO

SELECT OBJECT_NAME(i.object_id)

 i.name

 i.type_desc

 COALESCE(c.name, '* Internal *')

 p.partition_number,

 s.segment_id,

 s.row_count,

 s.on_disk_size,

 s.min_data_id,

 s.max_data_id

FROM sys.column_store_segments

INNER JOIN sys.partitions

 ON p.hobt_id

INNER JOIN sys.indexes

 ON i.object_id

 AND i.index_id

LEFT JOIN sys.index_columns

 ON ic.object_id

 AND ic.index_id

 AND ic.index_column_id

LEFT JOIN sys.columns

 ON c.object_id

 AND c.column_id

WHERE i.name

ORDER BY TableName, IndexName,

 s.column_id, p.partition_number,

javascript:;
javascript:;

The on_disk_size column, when used in conjunction with
row_count, can be used to quickly see how well (or how bad) the
data in a segment was compressed. This obviously also depends
on the data type, so if you don’t know the design of the table you
might want to add a few more columns from the sys.columns
catalog view to the query.

The values in min_data_id and max_data_id are, if the data type
of the column supports it, used for segment elimination (as
described in level 2 of this series). If you want to get the best
possible performance, you should definitely monitor these values
whenever one of your columnstore indexes has been (re)built.
The data returned from the query can be hard to interpret,
because non-integer columns are represented in an internal
format. But you can look at the values for different segments of
the same column. For instance, the data in figure 4-2 shows that
minimum and maximum data id for the ProductKey column are
the same for rowgroups 10, 11, and 12 (and, not visible in the
screenshot, for rowgroups 0 – 9 as well). In rowgroups 13, 14,
and 15, the minimum is higher and the maximum is lower.
Regardless of what actual values are represented, it is clear that
the interval in these last rowgroups is much smaller. That means
that these segments have some potential for segment elimination
based on the ProductKey column. But these are very small
rowgroups so there will be no gain; all of the full rowgroups
include the full range of ProductKey values and will not be able to
use segment elimination. In a later level I will show how you can
remedy this situation.

There are more columns in the sys.column_store_segments view,
but they are not really useful for monitoring or troubleshooting.
They do expose some of the internal details of how SQL Server
encodes the data in the columnstore index, so you can add them
to the query if you want to look at these values. A deep coverage
of these columns is beyond the scope of this article, so I will only
briefly describe them. The has_nulls columns is 1 if at least one
actual NULL value was encountered in the segment when

building the index. If that is the case, then null_value represents
the magic value that SQL Server has chosen to use to represent
NULL values in this segment.

The encoding_type is, as the name implies, the type of encoding
used in the segment. If you add this column to the query, you will
see that different encoding types can be used for different
segments of the same column. The possible values in this
column and their meaning are as follows:

Value Type of encoding

1 Value based

2 Dictionary encoding of non-strings

3 Dictionary encoding of strings

4 No encoding

The base_id and magnitude columns are only relevant when
value based encoding is used. They are used to scale down
numbers, so that fewer bits are needed to store the individual
values. For instance, when all values are multiples of 100,
magnitude is set to 100 and all values are divided by 100 before
being stored. And when all values are between 12345 and
13579, base_id is set to 12345 (the actual value might be slightly

http://www.sqlservercentral.com/articles/Stairway+Series/124326/

less or more) and that number is subtracted from the value, so
that values between 0 and 1234 are stored.

The primary_dictionary_id and secondary_dictionary_id columns
apply when dictionary encoding is used. They are references to
the global and local dictionaries (originally called primary and
secondary dictionaries; the column names have not been
changed for backwards compatibility reasons).

Finally, the version column is always 1 on both SQL Server 2012
and SQL Server 2014. The description in Books Online suggests
that this is included for future use, to enable Microsoft to add
alternative storage formats for columnstore segments in a future
release.

Some background to the query

When looking at the query in listing 4-3, you might wonder
why the sys.index_columns and sys.columns views are
joined with an outer join. The reason for this is that a
nonclustered columnstore index will sometimes contain
additional columns that were not included in the CREATE

INDEX statement. If you have not explicitly included all the

columns of the table’s clustered (row-store) index, SQL
Server will still add all of them to the nonclustered
columnstore index. Additionally, if the table’s clustered index
is a non-unique index, SQL Server will have created a
hidden uniqueifier that you cannot explicitly specify, but will
still be added to the columnstore index. And if the table has
no clustered index at all, SQL Server will add a hidden
column for the RID (or Row ID, which is the location of the
row in the heap). Data for each of these columns is included
in sys.column_store_segments, but not in
sys.index_columns. The outer join to sys.index_columns
ensures that these “hidden columns” in
sys.column_store_segments are still exposed; the join to
sys.indexes must then also be an outer join because
otherwise this data would still be lost.

Information on dictionaries
An encoding_type of 2 or 3 in sys.column_store_segments
means that dictionary encoding is used. SQL Server uses a
global dictionary or a local dictionary (or both) to store a list of
values that can then be replaced by a reference to the dictionary
entry in the actual data. You can query the
sys.column_store_dictionaries view, using the
primary_dictionary_id and secondary_dictionary_id entries found
in sys.column_store_segments, to retrieve additional information
about these dictionaries. One possible way to do so is by using
the query shown in listing 4-4.

USE ContosoRetailDW;

GO

SELECT OBJECT_NAME(i.object_id)

 i.name

 i.type_desc

 COALESCE(c.name, '* Internal *')

 p.partition_number,

 s.segment_id,

 s.encoding_type,

 dG.type

Listing 4-4: Querying dictionary information

Zoom in | Open in new window

Figure 4-3: Dictionary information

The query in listing 4-4 adds two joins to the logic of listing 4-3, to
add information about both the global dictionary and the local
dictionary. Both joins are outer joins, because segments that use
dictionary encoding may use only the global dictionary, only a
local dictionary, or both. The number of rows returned by this
query will never exceed the number of rows returned by listing 4-
3, because the additional filter on the encoding_type column
restricts this query to only segments that use a dictionary. On my
system, 587 rows were returned.

Three of the columns in the sys.column_store_dictionaries view
are exposed in this query. Two of them, entry_count and
on_disc_size, have self-descriptive names. You can divide them
to find out the length of the average entry in that particular
dictionary. The last one, type, tells you what type of values are
stored in the dictionary; this column shows 1 for a dictionary of
integer values, 3 for a dictionary of string values, or 4 for a
dictionary of floating point values.

There are a few other columns in sys.column_store_dictionaries
as well, that I did not include in the query. The version column is
documented as the “version of the dictionary format”; the valid
values and their meaning are not documented but I have never
observed a value other than 1 so I guess that this column is
included for future plans. The last_id column contains the last

 dG.entry_count

 dG.on_disk_size

 dL.type

 dL.entry_count

 dL.on_disk_size

FROM sys.column_store_segments

INNER JOIN sys.partitions

 ON p.hobt_id

INNER JOIN sys.indexes

 ON i.object_id

 AND i.index_id

LEFT JOIN sys.index_columns

 ON ic.object_id

 AND ic.index_id

 AND ic.index_column_id

LEFT JOIN sys.columns

 ON c.object_id

 AND c.column_id

LEFT JOIN sys.column_store_dictionaries

 ON dG.hobt_id

 AND dG.column_id

 AND dG.dictionary_id

LEFT JOIN sys.column_store_dictionaries

 ON dL.hobt_id

 AND dL.column_id

 AND dL.dictionary_id

WHERE i.name

javascript:;
javascript:;

