
Thank this author by sharing: 0

2010/05/07
FORUM

2015/08/07
ARTICLE

2014/04/05
BLOG

2014/01/15

BLOG

2011/02/12
FORUM

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Filtered Indexes in SQL
Server: Stairway to SQL
Server Indexes Level 7
By David Durant, 2011/08/24

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

In several preceding levels, we have said there is an exception to
the rule that every row of the table generates an entry in an
index. Some indexes have fewer entries than the corresponding
table has rows. These indexes are called filtered indexes; a
feature that was introduced with SQL Server 2008.

A description of the tables used in the examples in this level, from
the AdventureWorks database, can be found in the Resources
section at the end of the article.

Filtering an Index
You filter an index the same way you filter a SELECT statement;

with a WHERE clause; as in:

Related Articles

Filter index

Filter index

Strange Filtered Index Problem

What I thought was a strange filtered
index problem but turned out to be a DB
settings problem

SQL Server Filtered Index

What is a SQL Server Filtered Index A
SQL Server Filtered index is a
nonclustered indexes that ca...

SQL Server Filtered Index
Performance

Filtered Index – Database Performance
SQL Server 2012 includes filtered indexes
and is a great fe...

Filtered index SET options

Filtered index SET options

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

IF EXISTS (SELECT *

 FROM sys.indexes

 WHERE OBJECT_ID = OBJECT_ID('S

 AND name = 'FI_SpecialOf

 DROP INDEX Sales.SalesOrderDetail.FI_Spe

GO

CREATE INDEX FI_SpecialOfferID

ON Sales.SalesOrderDetail (SpecialOfferID)

WHERE SpecialOfferID;

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=355675&zid=15220&t=1522616160&auth=04e2aa84e78d0974ead985235be75d70
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72285%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522616160&auth=e337d1e11a6cb5fdbdaeb84a916b61b6
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1063683.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Forums/FindPost917690.aspx
http://www.sqlservercentral.com/articles/129423/
http://www.sqlservercentral.com/blogs/business-intelligence-and-enterprise-architecture/2014/04/05/sql-server-filtered-index/
http://www.sqlservercentral.com/blogs/business-intelligence-and-enterprise-architecture/2014/01/15/sql-server-filtered-index-performance/
http://www.sqlservercentral.com/Forums/FindPost1062961.aspx
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

Listing 7.1: Creating a filtered index

The primary reason for filtering an index is to eliminate one or
more highly unselective values from the index. Consider the
SpecialOfferID column of the SalesOrderDetail table.

The 121,317 rows contain twelve different SpecialOfferID

values, ranging from 1 to 16. The number of rows for each value
is shown in table 7.1.

SpecialOfferID RowCount

-------------- -----------

1 115884

2 3428

3 606

13 524

14 244

16 169

7 137

8 98

11 84

4 80

9 61

5 2

Table 7.1: RowCount summary for the SpecialOfferID colum
of the SalesOrderDetail table

The vast majority of the rows, over 95%, have a
SpecialOfferID value of 1. Therefore, a nonclustered index

on the SpecialOfferID column would not benefit a query that

requested rows WHERE SpecialOfferID = 1. That query

would use a table scan to find the 115,884 requested rows.
 However, the index would benefit queries seeking rows WHERE

SpecialOfferID = 5.

The CREATE INDEX statement shown in Listing 7.1 generates an

index that has no entries for the 115,884 "SpecialOfferID =

1" rows; entries that would be of no value anyway. Thus, the

resulting index is small, tight, and efficient, containing just 5433
entries.

In our SalesOrderDetail example, the dominant value that

needed be filtered out was '1'. In your own applications, the most
common dominant value is probably 'NULL'. In a typical

transactional database, there are nullable columns in which nulls
predominate and NOT NULL values are the exception. When

creating an index on these columns, always consider filtering out
the nulls.

Proof of Concept
To verify the benefit of filtered indexes, we'll run the query shown
in Listing 7.2 six times:

Three times against an unfiltered index on the
SpecialOfferID column, with parameter values of '1' , '13'

and '14'
Three times against an filtered index on the
SpecialOfferID column, with the same parameter values.

As can be seen from the RowCount summary shown in Table
7.1, our first parameter, '1', occurs in 95% of the rows; the

second, '13', in 4% of the rows; and the last, '14', in 2% of the
rows.

Listing 7.2: A query to test our filtered index

As usual, we use "reads" as our primary performance metric; and
we use SQL Server Management Studio's "Show Actual
Execution Plan" to observe SQL Server's plan for each query. We
begin by creating an unfiltered index, as shown in Listing 7.3.

Listing 7.3: Creating the unfiltered index

We execute the query once for each of our three parameter
values, and then recreate the index; this time as a filtered index,

as shown in Listing 7.1. This filtered index will contain 1/20th (5%)
the number of entries of the unfiltered index. Again, we execute
the query once for each of our three parameter values. The
combined results are shown in Table 7.2.

WITH UNFILTERED INDEX:
Parameter
Value

Reads Plan

1 1238 Table scan

13 1238 Table scan

14 758
Retrieve bookmark values from index. Use
them to retrieve rows from table

WITH FILTERED INDEX:
Parameter
Value

Reads Plan

1 1238 Table scan

13 1238 Table scan

14 758
Retrieve bookmark values from index. Use
them to retrieve rows from table.

Table 7.2: Results running the query with both filtered and
unfiltered index

SELECT *

FROM Sales.SalesOrderDetail

WHERE SpecialOfferID = <parameter v

ORDER BY SpecialOfferID ;

SELECT *

FROM Sales.SalesOrderDetail

WHERE SpecialOfferID = <parameter value

ORDER BY SpecialOfferID ;

As the table 7.2 shows, the results are the same regardless of
which index is used. In other words, the filtered index is just as
beneficial as the unfiltered index, which is twenty times larger. We
get a tremendous saving in disk space at no cost in query
performance.

Filtering, Searching and Covering
In the sample index that we just examined, the index key
column(s) and the filtering column(s) were the same column.
Although this is often the case, it is not a requirement. When we
specified our filtering WHEREclause, we told SQL Server: "If you

are looking for rows whose SpecialOfferID value is <>

1, this index has the entries for those rows." It can be beneficial

for SQL Server to know this information, regardless of the index
key.

Consider the index that we have created in previous levels to
help the warehouse staff search the SalesOrderDetail table

for product related information. The last version of the index, the
one appearing in Levels 5 & 6, is repeated in Listing 7.4.

Listing 7.4: Creating the nonclustered index with included
columns

The resulting index would contain the following index rows:

:- Search Key Columns -: : --- Included

Columns ---: :--- Bookmark ---:

ProductID ModifiedDate OrderQty UnitPrice

LineTotal OrderId DetailId

----------- ------------ -------- ---------

--------- ----------- ----------

Page n-1:

709 01 Feb 2002 1

5.70 5.70 45329 6392

709 01 May 2002 1

5.70 5.70 46047 8601

710 01 Jul 2001 1

5.70 5.70 43670 111

710 01 Jul 2001 1

5.70 5.70 43676 152

710 01 Sep 2001 1

5.70 5.70 44075 1448

Page n:

710 01 Oct 2001 1

5.70 5.70 44303 2481

710 01 Nov 2001 1

5.70 5.70 44484 2853

CREATE NONCLUSTERED INDEX FK_ProductID_Modif

 ON Sales.SalesOrderDetail (ProductID,Modi

 INCLUDE (OrderQty,UnitPrice,LineTotal) ;

710 01 Nov 2001 1

5.70 5.70 44499 3006

710 01 Nov 2001 1

5.70 5.70 44523 3346

710 01 Nov 2001 1

5.70 5.70 44527 3400

If the warehouse frequently requests product information for rows
whose special offer category is not "1", and seldom requests
information for category 1 rows; then adding a
WHERESpecialOfferID != 1 clause to the create index

statement makes sense. The end result is a much smaller index
that covers the majority of the requests. So, let's we modify our
CREATE INDEX statement as demonstrated in Listing 7.5.

Listing 7.5: Creating the filtered, nonclustered index with included
columns

Next, execute the query shown in Listing 7.6

SELECT ProductID ,

 ModifiedDate ,

 SUM(OrderQty) 'No of Items' ,

 AVG(UnitPrice) 'Avg Price' ,

 SUM(LineTotal) 'Total Value'

FROM Sales.SalesOrderDetail

WHERE SpecialOfferID <> 1

GROUP BY ProductID ,

 ModifiedDate

Listing 7.6: Querying the filtered, nonclustered index with
included columns

SQL Server Management Studio informs us that the filtered index
was scanned and that 36 pages (possible spread over as few as
5 extents) were read to generate the 2,102 rows of output.

Some Wordsof Caution
There are a couple of important issues to bear in mind when
deciding on your strategy for designing and using filtered
indexes.

CREATE NONCLUSTERED INDEX FK_ProductID_Modif

 ON Sales.SalesOrderDetail (ProductID,Modif

 INCLUDE (OrderQty,UnitPrice,LineTotal)

 WHERE SpecialOfferID <>1

How SQL Server evaluates Filtered
Indexes
You might be surprised to learn that changing the WHERE clause

in the previous statement from "SpecialOfferID <> 1" to

"SpecialOfferID = 2" will prevent SQL Server from using the

filtered index. This is because SQL Server compares the WHERE

clause of the SELECT statement against the WHERE clause of the

CREATE INDEX statement for lexical equivalence, not for logical
equivalence. Therefore, SQL Server does not realize that the
filtered index covers the query.

In addition, you could not cause SQL Server to use the filtered
index by using a redundant where clause that combined both
criteria, like so, "WHERE SpecialOfferID <> 1 AND

SpecialOfferID = 2". In a later level we cover Index Hints;

which give you the ability to influence SQL Server's choice of
index. For now, however, just remember that SQL Server is
making a lexical decision when evaluating a filtered index.

Don't use Filtered Indexes to
Compensate for Poor Database Design
When creating a filtered index, verify that you are not creating
that index to compensate for a failure of third normal form in your
database design.

NOTE:
We are about go beyond the normal scope of this Stairway
series, in order to make some brief comments about logical
database design; comments that are relevant to filtered indexes
which may help you avoid a common design flaw. These
comments that will be presented without background or
elaboration.

Most commonly, a failure of third normal form is caused by a
failure to recognize entity subtypes in your design. Consider the
representation of the contents of the Products table, shown in

Figure 7.1.

ProductID Description Type Price Author IssuesPerYear
(Primary
Key)

44E Roots Book 44.50
Alex
Haley

17J Time Periodical 18.00 52

22D
Gift from the
Sea

Book 37.00
Anne
Morrow
Lindbergh

18K
National
Geographic

Periodical 38.00 12

78K
Good
Housekeeping

Periodical 37.00 12

Figure 7.1: The contents of a Products table containing two
subtypes

It is apparent from the data in this table that there are two
subtypes of products: books and periodicals. Only books have
author information and only periodicals have issues-per-year
information. The proper way to model subtypes is to have one
table that holds the information common to all types, plus one
table for each subtype. All tables have the same primary key

column(s), with the primary key of the subtype tables also being
the foreign key that links them to the main table.

Thus, the Products table would best be broken into the

following three separate tables, as shown in Figures 7.2, Figure
7.3 and Figure 7.4.

Products Table

ProductID Description Price

(Primary Key)

44E Roots 44.50

17J Time 18.00

22D Gift from the Sea 37.00

18K National Geography 38.00

78K Good Housekeeping 37.00

Table 7.2: A Products table containing information common
to all products

Books table

ProductID Author
(Primary Key and Foreign Key)

44E Alex Haley

22D Anne Morrow Lindbergh

Table 7.3: A Books table containing information relevant only
to book products

Periodicals table

ProductID IssuesPerYear
(Primary Key and Foreign Key)

17J 52

18K 12

78K 12

Table 7.4: A Periodicals table containing information relevant
only to periodical products

As such, filtered indexes, especially ones that filter out NULL

values, could be an indication that an entity subtype has been
overlooked.

The correct solution is to redefine the tables, but many might
question whether it not is really matters if the complete
information for a subtype is in two easily-joined tables or in one
filtered index. It does. Application developers and application
development tools know nothing of your indexes; they can only
see your tables. If the structure of your tables does not reflect the
structure of the business, developers will struggle to build and
maintain an application on top of your database.

Conclusion
A filtered index eliminates unusable entries from the index,
producing an index that is as beneficial as, but much smaller
than, an unfiltered index. An index is filtered by specifying a
WHERE clause within the CREATE INDEX statement. The

columns specified in the WHERE clause can be different from the

columns specified for the index key, or from the columns
specified in the INCLUDE clause.

If a certain subset of a table's data is frequently requested, a
filtered index can also be a covering index; resulting in a
considerable reduction in IO.

