
Thank this author by sharing: 0

2009/07/14

FORUM

2007/11/15

FORUM

2008/03/20
FORUM

2009/05/21
FORUM

2008/06/27
FORUM

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Stairway to Columnstore
Indexes Level 9: Batch
Mode Execution
By Hugo Kornelis, 2016/08/31

The Series
This article is part of the Stairway Series: Stairway to
Columnstore Indexes

SQL Server 2012 and later offer a very different type of index
from the traditional b-tree, the in-memory columnstore index.
These indexes use a column-based storage model, as well as a
new 'batch mode' of query execution and can offer huge
performance increases for certain workloads. But how are they
built, how do they work, and why do they manage to have such a
dramatic impact on performance? In this stairway, Hugo Kornelis
explains all, with his usual mix of concise description and detailed
demonstration.

You may remember from the first level of this series that the
performance benefit from using columnstore indexes can be
attributed to two major factors: reduced I/O (caused by column
elimination, rowgroup elimination, and compression), and batch
mode execution. In all the levels that followed, I have only
focused on the I/O reduction. It is now time to switch our focus
from I/O to the execution mode. In this level, I will explain what
batch mode execution is and how it differs from row mode
execution. I will then tell you about some of the limitations of
batch mode execution. In the level after this I will focus on
techniques you can use to work around the limitations of batch
mode execution.

The sample database

All sample code in this level uses Microsoft’s
ContosoRetailDW sample database and builds upon the
code samples from the previous levels. If you didn’t follow
this stairway from the start, or if you did other tests in that
database and are now concerned that this might impact the
code in this level, you can easily rebuild the sample
database. First, download the Contoso BI Demo Database
from https://www.microsoft.com/en-
us/download/details.aspx?id=18279, choosing the
ContosoBIdemoBAK.exe option that contains a backup file.
After that, download the scripts attached to this article and
execute the one appropriate for your system (either SQL
Server 2012 or SQL Server 2014. If you are running SQL
Server 2016, I suggest using the 2014 version of this script;

Related Articles

Problem while executing Query
batch

Problem while executing Query batch
using c# code

Executing batches
asychronously?

discuss support for asynchronous batch
execution in sql server 2000

Query Cost v. Execution Time

Percent of batch cost does not match % of
batch execution time

How to execute sql files in batch

How to execute sql files in batch

Miant Plan -batch file execution

Miant Plan -batch file execution

Tags
columnstore index
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=362446&zid=15220&t=1522616942&auth=be106d2a45bca2ed7888ee5375b35fe9
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f145064%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=328526&zid=15491&t=1522616943&auth=dbc4c7d2a7984b6984374d3a06215e80
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1809065.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/Hugo_Kornelis/264757/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/articles/Stairway+Series/121633/
https://www.microsoft.com/en-us/download/details.aspx?id=18279
http://www.sqlservercentral.com/Forums/FindPost752570.aspx
http://www.sqlservercentral.com/Forums/FindPost422114.aspx
http://www.sqlservercentral.com/Forums/FindPost471117.aspx
http://www.sqlservercentral.com/Forums/FindPost721181.aspx
http://www.sqlservercentral.com/Forums/FindPost524907.aspx
http://www.sqlservercentral.com/articles/ColumnStore+Index/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

keep in mind however that there have been significant
changes in this version so many of the demo scripts in this
stairway series will not work the same on SQL Server 2016.
We will cover the changes in SQL Server 2016 in a later
level). Do not forget to change the RESTORE DATABASE
statement at the start: set the correct location of the
downloaded backup file, and set the location of the database
files to locations that are appropriate for your system.

Once the script has finished, you will have a
ContosoRetailDW database in exactly the same state as
when you had executed all scripts from all previous levels.
(Except for small variations in the index creation process that
are impossible to avoid).

A basic example
Let’s first run a simple query twice, once in batch mode and once
in row mode. I will use the FactOnlineSales table in the
ContosoRetailDW database, which has a nonclustered
columnstore index. I use this nonclustered columnstore index for
two reasons: because this makes it easier to force row mode
execution, and because this query works on both SQL Server
2012 and SQL Server 2014. The query in listing 9-1 retrieves
some information, aggregated by product, of sales that had a
markup of more than 10%.

Listing 9-1: Batch mode and row mode for the same query

As you see, this code runs the same query twice. The first time
uses no hints so that the nonclustered columnstore index will be
used; the second one adds a hint to prevent parallelism, which in
SQL Server 2012 and 2014 disables batch mode.

If you run this code on SQL Server 2012, with the option to
include the actual execution plan enabled, you should get a result
similar to figure 9-1. (Note that I edited the topmost plan to
shorten the arrows, for better readability)

USE ContosoRetailDW;

GO

-- Run a simple query that will use batch mo

SELECT ProductKey,

 COUNT(*) AS TotalSales,

 SUM(SalesQuantity) AS TotalQuantity

 SUM(SalesAmount) AS TotalAmount

FROM dbo.FactOnlineSales

WHERE UnitPrice > UnitCost * 1.1

GROUP BY ProductKey;

-- Repeat the same query without parallelism

SELECT ProductKey,

 COUNT(*) AS TotalSales,

 SUM(SalesQuantity) AS TotalQuantity

 SUM(SalesAmount) AS TotalAmount

FROM dbo.FactOnlineSales

WHERE UnitPrice > UnitCost * 1.1

GROUP BY ProductKey

OPTION (MAXDOP 1);

Zoom in | Open in new window

Figure 9-1: Execution plans for batch mode and row mode
on SQL Server 2012

If you are using SQL Server 2014, your result will look slightly
different, as shown in figure 9-2.

Zoom in | Open in new window

Figure 9-2: Execution plans for batch mode and row mode
on SQL Server 2014

Comparing these execution plans, you will see some differences.
The serial plan obviously does not have the parallelism markers
and the extra “Parallelism” operators; additionally, the parallel
plan needs one extra “Hash Match (Aggregate)” operator for
optimization reasons that no longer apply in SQL Server 2014.

However, you do not see any differences related directly to the
execution mode. That is because those differences, important as
they are, are not directly visible in the plan – you have to look at
the properties of the various operators to see which are running
in batch mode and which are running in row mode. If you click
somewhere in the top-most execution plan and then hover the
mouse over the filter operator, a tooltip window will pop up, as
shown in figure 9-3:

Zoom in | Open in new window

Figure 9-3: Properties tooltip window showing execution
mode

This tooltip window shows how this operator executed. The
“Estimated Execution Mode’ tells you how the optimizer intended
the operator to run; the “Actual Execution Mode” shows how it
actually ran. Both of these can be either “Batch” or “Row”, and in
most cases they will be equal.

If you repeat this exercise for each of the operators in the plan,
you will see that all operators in the second query run in row
mode. For the first query, the rightmost four (on SQL Server
2012) or five (on SQL Server 2014) operators run in batch mode;
this query is said to be executed in batch mode. You will often get
the full performance benefit of batch mode execution even when
some of its operators run in row mode; more on that below and in
the next level.

Inside the operator
You now know where to look if you want to find out if a query has
been using batch mode, and for which operators. But what does

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;

it actually mean? To understand that, I first need to explain a bit
about how SQL Server executes a query.

Every icon you see in an execution plan represents an operator.
Each of those operators can be thought of as a small computer
program, highly specialized to perform one single task. These
programs do not run by themselves. Like stored procedures in T-
SQL, they are not active until they are called. Then they do
whatever they need to do to return a result to the caller, after
which they return to the inactive state until they are called again.

Let’s walk through an example, focusing on what happens in the
rightmost three operators in the plans above when executing in
row mode: Filter, Compute Scalar, and Columnstore Index Scan.
It starts when the Filter operator is called because its parent
operator needs a row. The task of the Filter operator is to check a
condition, but it needs data to do the check so the first thing Filter
does is to call Compute Scalar, asking for a row. Compute
Scalar’s task is to add the result of a computation to a row, but it
also needs to have a row, so it calls Columnstore Index Scan.
This operator then calls into the storage engine, which grabs a
row from the index and returns it to the scan operator, which in
turn returns it to Compute Scalar. That operator then does its
computation, adds the result of that computation as an extra
column to the row, and then passes that row back to the Filter
operator. Filter then applies the logical test, to determine whether
to reject the row and once more call into Compute Scalar for the
next row, or to pass the row back to its parent operator that can
then do its processing – until that parent needs the next row and
the whole process starts again.

For a computer, passing control (i.e. calling another subprogram
or returning from such a call) is relatively expensive. In the above
description, you can see that control is passed six times in order
to get just a single row processed by the Filter operator. And
since there are over 12.6 million rows in the table, that works out
to passing control over 75 million times (12.6 million times 6
equals 75.6 million), for this part of the plan.

When executing in batch mode, the start of the story is the same.
Filter is called because its parent needs data, and because Filter
itself needs data it calls Compute Scalar, which in turn calls the
Columnstore Index Scan operator. This operator then accesses
the storage engine, but this time it will not request a single row –
it requests a so-called “batch”: a collection of multiple rows,
stored in an internal memory structure in a format very similar to
the on-disk storage format of columnstore indexes. That batch is
returned from the storage engine to the scan operator, and from
the scan operator to Compute Scalar. This operator then quickly
iterates over all the data in the batch and adds the computed
column for each row, then returns control to the Filter operator.
Filter then loops over all rows in the batch, selects which rows
qualify and which rows should be removed, then hands the result
over to its parent operator.

We still see control being passed between operators in the
description above, but in this case it happens not for each row,
but for each batch. If you look at the properties of the operators in
the execution plan, you can see how many batches were used (in
the “Actual Number of Batches” property). On my SQL Server
2012 test instance, all rows were combined into 35,534 batches.
So now the number of times control was passed to get all rows
processed by the Filter operator is reduced to 6 * 35,534 =
213,204 times. A huge saving when compared to the 75 million
times control was passed when executing in row mode.

This reduction, along with a huge amount of smart optimizations
in the actual code used in each of the operators, is what makes
batch mode execution so much faster than row mode execution.

How big is a batch?

When looking only at the cost of passing control, you might
wonder why Microsoft didn’t simply put a million rows or
more in a single batch to reduce this number even further.
There is a good reason for that, and that is related to the cost
of accessing the data. The fastest way to access data is
when the data resides in the CPU cache, but those have a
limited size. When the size of the batch exceeds the size of
the CPU cache, the operator becomes slower because it has
to access data from main memory – a lot faster than reading
from disk, but not quite as fast as reading from the CPU
cache.

When columnstore indexes were introduced, back in 2012,
Microsoft marketing material often described a batch as
containing “approximately a thousand” rows. This figure has
later been changed to “typically up to 900”. Both of these
are, as is often the case with marketing terms, simplified and
misleading.

On my SQL Server 2012 test instance, when I look at the
operators and divide the Actual Number of Rows by the
Actual Number of Batches, I see that I get on average
approximately 356 rows in a batch for the query above; on
my SQL Server 2014 instance (which runs in a VM) that
number drops to 305. For other queries, that figure can be
higher or lower. And on your system it will probably be yet a
different figure. The actual number of rows in a batch is
based on two factors: the amount of data that has to be
stored for each row (adding more columns to the query will
reduce the batch size), and the hardware you are running on
(on a system with a larger CPU cache, more rows can be
stored in a batch without exceeding the CPU cache size).
For understanding the performance gain of batch mode, it is
not really relevant what the exact batch size is; what matters
is that the batch mode architecture results in a huge
reduction of how often control is passed.

Combining batch mode and row mode
As mentioned before, when a query executes in batch mode it
usually does not use batch mode for all operators in the
execution plan, but a mixture of batch mode and row mode. This
is by design, and in many cases you will get the full performance
benefit even if not all operators are executing in batch mode – but
there are also situations where the “wrong” operators run in row
mode, significantly reducing the performance of the query as a
whole.

Consider the query in listing 9-2. It computes the total number of
units sold and the total amount for which they are sold, and then
adds a ranking to it based on that amount.

USE ContosoRetailDW;

go

WITH SalesPerProduct

AS (SELECT ProductKey,

 SUM(SalesQuantity) AS TotalQuan

Listing 9-2: A query that combines batch mode and row
mode operators

If you run this query on SQL Server 2012 or SQL Server 2014
and check the execution plan, you will get the result as shown in
figure 9-4 (for SQL Server 2012) or figure 9-5 (for SQL Server
2014). The shaded area shows which operators run in batch
mode; all other operators run in row mode.

Zoom in | Open in new window

Figure 9-4: Combined batch and row mode on SQL Server
2012

In figure 9-4 (which, again, was edited to shorten the arrows
between the operators), you can see that only 2 of the total 10
operators run in batch mode. But when you look at the properties
of all operators to see how many rows they receive and how
many rows they produce, you will notice that the operators
running in batch mode are the operators that do over 99.9% of
the work for this query. The batch mode portion reads over 12
million rows from the fact table and aggregates that down to just
2528 rows. That tiny set then uses row mode for the rest of the
processing.

As can be seen in figure 9-5, the SQL Server 2014 version of this
plan is very similar. There have been some simplifications in the
row mode part of the plan, but the largest part of the work
(reading and aggregating 12 million rows) still occurs in batch
mode.

Zoom in | Open in new window

Figure 9-5: Combined batch and row mode on SQL Server
2014

The query and execution plans shown here are an example of
“good” mixed mode: all the operators that have to do a lot of the
work run in batch mode, and the row mode part of the plan only
operates on a small set of data (left over after filtering or –in this
case– aggregation).

Unfortunately, there are also situations where operators that have
to process lots of rows do not run in batch mode, causing a
significant slowdown of your queries. I will show some examples
of this in the next level; I will then also explain how this can often
be avoided by rewriting the query.

Run-time mode switch
The switches between row mode and batch mode execution
shown above are made when the plan is compiled. You can see
this because the estimated execution mode (what the optimizer
requested) and the actual execution mode (what happened at
run-time) of each operator are the same. It is also possible for a
query to fall back from batch mode to row mode while the query

 SUM(SalesAmount) AS TotalAmount

 FROM dbo.FactOnlineSales

 GROUP BY ProductKey)

SELECT ProductKey,

 TotalQuantity,

 TotalAmount,

 RANK() OVER (ORDER BY TotalAmount)

FROM SalesPerProduct;

javascript:;
javascript:;
javascript:;
javascript:;

executes; in that case the estimated execution mode is batch, but
the actual execution mode will show as row.

For SQL Server 2012, the most common cause of run-time
fallback to row mode is a hash spill condition. (Another condition,
very rare, is insufficient accessible working memory) Hash spilling
can occur for every plan that uses one or more “hash match”
operators, especially when the actual number of rows is much
more than the estimated number. This is because the hash match
operator uses main memory to store data. When the query starts,
it reserves memory based on the estimated number of rows. It
cannot request additional memory later, so when it runs out of
memory, it has to spill some of the data to tempdb instead of
keeping everything in memory, causing a performance hit for any
query where this happens. But that hit is worse for queries using
batch mode on SQL Server 2012, because that version only
supports spilling to tempdb in row mode. As soon as the available
memory runs short, execution has to switch to row mode – an
event called “bailout”.

USE ContosoRetailDW;

GO

-- Create and populate a temporary version o

SELECT ProductKey, ColorName, Manufacturer

INTO dbo.TmpProduct

FROM dbo.DimProduct;

INSERT INTO dbo.TmpProduct (ColorName, Manuf

VALUES ('Green', 'ZZ Marketing');

ALTER TABLE dbo.TmpProduct

ADD PRIMARY KEY (ProductKey);

GO

-- Add some extra rows

INSERT INTO dbo.TmpProduct (ColorName, Manuf

SELECT ColorName, Manufacturer

FROM dbo.TmpProduct;

GO 10

-- Force the bailout (SQL Server 2012 only!

DECLARE @MinManufacturer varchar(50) = 'A';

SELECT dp.ColorName,

 COUNT(fos.SalesOrderNumber) AS Nu

 SUM(fos.SalesQuantity) AS Qu

FROM dbo.FactOnlineSales AS fo

INNER JOIN dbo.TmpProduct AS dp

 ON dp.ProductKey = fo

WHERE dp.Manufacturer >= @M

GROUP BY dp.ColorName

ORDER BY dp.ColorName

OPTION (OPTIMIZE FOR (@MinManufacturer = 'Y

GO

-- Cleanup

DROP TABLE dbo.TmpProduct;

