
Thank this author by sharing: 0

2012/05/23

BLOG

2012/03/16
BLOG

2016/03/11

ARTICLE

2014/06/03

BLOG

2014/04/29

BLOG

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Keep up to date -
daily newsletter:

your@email.com

Sign up

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Stairway to Columnstore
Indexes Level 3: Building
The Columnstore
By Hugo Kornelis, 2018/02/28 (first
published: 2015/06/10)

The Series
This article is part of the Stairway Series: Stairway to
Columnstore Indexes

SQL Server 2012 and later offer a very different type of index
from the traditional b-tree, the in-memory columnstore index.
These indexes use a column-based storage model, as well as a
new 'batch mode' of query execution and can offer huge
performance increases for certain workloads. But how are they
built, how do they work, and why do they manage to have such a
dramatic impact on performance? In this stairway, Hugo Kornelis
explains all, with his usual mix of concise description and detailed
demonstration.

In the previous levels of this Stairway we have looked at the
performance benefits that can be achieved when reading data
from a columnstore index. It is a well-known fact that every
benefit comes at a cost; in the case of columnstore indexes, the
benefit is the increased performance when reading data from the
index; the cost is the expensive process required to build the
index.

A second down-side to columnstore indexes is that their structure
does not lend itself to updates. For this reason, a nonclustered
columnstore index, introduced in SQL Server 2012, is read-only –
and by extension has the effect of making the underlying table
read-only. The clustered columnstore index that was introduced
in SQL Server 2014 does allow updates to the underlying data,
but this feature should be handled with care. In one of the later
levels, we will cover how to use this feature without shooting
yourself in the foot.

Because nonclustered columnstore indexes are read only, you
will have to disable or remove them before you can load new
data, and then recreate or rebuild afterwards. (For partitioned
tables, it is usually possible to do this for a single partition only,
using partition switching). For clustered columnstore indexes, the
process of (re)building the index is often not directly visible, but it
happens too. In order to understand the impact this may have on
your server, you need to understand the steps SQL Server takes
when building (or rebuilding) a columnstore index.

Related Articles

Columnstore indexes and
memory

Columnstore indexes are built and
processed completely in memory. You will
receive an out-of-memory...

Columnstore Indexs

Columnstore Indexes for Fast DW The
SQL Server 11.0 release (2012)
introduces a new data warehouse...

Stairway to ColumnStore
Indexes Level 7: Optimizing
Nonclustered Columnstore
Indexes

In this level, we will focus on optimization
techniques to apply while building the
nonclustered col...

Columnstore Memory Grant
Issue

In a previous post about non-clustered
columnstore indexes, I mentioned the
creation of an index is ...

What is a Non-Clustered
Columnstore Index?

First introduced in SQL Server 2012, the
Columnstore index is a new in-memory
feature that allows fo...

Tags
columnstore index
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Stay up to date:

Daily newsletters with brand new
articles, scripts, editorials and a
Question of the Day help you keep
on top of SQL Server.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=328527&zid=15220&t=1522616729&auth=40a270b22ce0a7cce2d3d104c3587390
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f126202%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522616729&auth=ef645491946b2cf24373f3310450b779
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1685026.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/Hugo_Kornelis/264757/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/blogs/jamesserra/2012/05/23/columnstore-indexes-and-memory/
http://www.sqlservercentral.com/blogs/microsoft-business-intelligence-and-data-warehousing/2012/03/15/columnstore-indexs/
http://www.sqlservercentral.com/articles/138566/
http://www.sqlservercentral.com/blogs/everyday-sql/2014/06/03/columnstore-memory-grant-issue/
http://www.sqlservercentral.com/blogs/everyday-sql/2014/04/29/what-is-a-non-clustered-columnstore-index/
http://www.sqlservercentral.com/articles/ColumnStore+Index/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

Initiating the build process
The most obvious way to tell SQL Server to build a columnstore
index is to use the CREATE INDEX statement. There are also a

few other statements and conditions that can cause SQL Server
to build or rebuild a columnstore for all or some of the data in a
table; these statements will be covered in a later level. The
internal process of building the columnstore is basically the same
regardless of how the process is initiated.

The syntax for the CREATE INDEX statement depends on

whether you want to create a clustered or a nonclustered
columnstore index, but is pretty simple and straightforward in
either case. Figures 3-1 and 3-2 show the syntax for creating
nonclustered and clustered columnstore indexes.

Figure 3-1: Simplified syntax for creating a nonclustered
columnstore index

Figure 3-2: Simplified syntax for creating a clustered
columnstore index

As you can see from the syntax diagrams, the syntax for the two
is very similar. The main difference, apart from the (optional)
keyword NONCLUSTERED versus the mandatory keyword

CLUSTERED, is that no column list can be specified for a

clustered columnstore index, whereas a nonclustered
columnstore index does require the columns to be listed. But a
sort order (ASC or DESC) cannot be specified, since columnstore

indexes do not store the data in ordered fashion. The ON clause

is only required if you want to allocate the columnstore index on a
non-default filegroup or if you want it to be partitioned.

In SQL Server 2012, supported data types in a nonclustered
columnstore index are limited to char, nchar, varchar, and

nvarchar (with a maximum length of 8000 bytes); decimal and

numeric (with a maximum precision of 18 digits); bit,

tinyint, smallint, int, and bigint; float, real, money,

and smallmoney; and all date/time datatypes except

datetimeoffset with a scale of 3 or more. Columns may be

nullable, but they may be neither computed, nor SPARSE. These

restrictions may appear to be very limiting, but in reality, most
databases that are designed for the type of BI workload that
columnstore indexes are intended for will already only include the
supported data types in their large fact tables. As a rule of thumb,
when creating a nonclustered columnstore index, best practice is
to include all the columns in the table except those that are not
supported. Remember that unlike for rowstore indexes, additional
columns in a columnstore index will not reduce query

CREATE [NONCLUSTERED] COLUMNSTORE INDEX In

ON [[DatabaseName.] SchemaName.] TableNa

 (ColumnName

 , ColumnName

 , ...)

[WITH ([DROP_EXISTING = { ON | OFF }], [

[ON { FileGroup | PartitionScheme(ColumnNam

CREATE CLUSTERED COLUMNSTORE INDEX IndexName

ON schema.TableName

[WITH ([DROP_EXISTING = { ON | OFF }], [

[ON { FileGroup | PartitionScheme(ColumnNam

performance. There is additional cost when building the
columnstore index, but you end up with an index that can be
used by more queries.

In SQL Server 2014, the supported data types for both clustered
and nonclustered columnstore indexes has been extended to
include all data types except varchar(max), nvarchar(max),

varbinary(max), text, ntext, image, rowversion (aka

timestamp), sql_variant, hierarchyid, geometry,

geography, xml, cursor, and all user-defined CLR data types.

If a table includes any columns that are not supported for a
columnstore index, the index cannot be created. You can still
create a nonclustered columnstore index on only the columns
that are supported, but a clustered columnstore index is not
possible because this index type always includes all columns in
the table.

The build process
When SQL Server creates a columnstore index (either clustered
or nonclustered), it will kick off one or more threads. Each of
these threads will read an entire rowgroup (up to a million rows)
into memory, then sort those rows in order to maximize
compression benefits. After that, the rowgroup is further divided
into segments: one segment per column, so each segments now
contains up to a million values from a single column. SQL Server
then determines the best compression method for each segment,
performs the actual compression, and then stores the
compressed data in the database file, on special LOB pages (the
same type of storage that is also used to store varchar(max),

nvarchar(max), and varbinary(max) data).

During this process, SQL Server will also track, for each column,
the minimum and maximum value in each segment. These will be
stored in the metadata for the columnstore index, where they can
be used for segment elimination. We will take a closer look at this
and other metadata in a later level.

In SQL Server 2012, the global (primary) dictionary is formed
while the index is built. While that makes the build process
relatively efficient, it also leads to a global dictionary that is
optimal for the first segments, but may be less useful for the
complete table, especially if the data encountered in the first
segments is not representative. For example, when building a
columnstore index for the sales table of a clothing shop, the first
rowgroups processed might all be from spring and summer. SQL
Server will then fill the global dictionary with typical summer
clothing, because they are common in these rowgroups. When
then later the process progresses to the autumn and winter data,
the global dictionary might already be full, and all winter items
can only be placed in the local dictionaries.

To help the global dictionary be a better reflection of the data in
the entire table, the build process has been changed in SQL
Server 2014. It now first kicks off on a single thread that reads a
sampled selection of data pages from the entire table in order to
form a global dictionary for each column; after that the second
phase starts to use all available threads to build the actual
columnstore index. The execution plans in figures 3-3 and 3-4
clearly show these differences. Both execution plans were
generated by running the code in listing 3-1 below, on different
versions of SQL Server. (Note that these plans require generating
an ‘actual’ execution by by running the query. An ‘estimated’
execution plan will not give this level of detail.) The plan for SQL

Server 2012 has only a single branch that simply builds the
index; the plan for SQL Server 2014 has two branches, a serial
section on top for building the global dictionary and below that a
parallel section for actually building all the segments.

Zoom in | Open in new window

Figure 3-3: Building a columnstore index in SQL Server 2012

Zoom in | Open in new window

Figure 3-4: Building a columnstore index in SQL Server 2014

The number of rows that SQL Server 2014 will sample when
building the global dictionary depends on the total number of
rows in the table (“cardinality”), as shown in table 3-1. Note that
the number of rows sampled is an approximation; the exact
number of rows sampled might vary slightly. Also note that for
table sizes up to a million rows, where the full table is sampled,
the execution plan will still have the same two branches, to first
build the dictionary and then build the actual index. The second
branch will in this case not use parallelism. In effect, the entire
table is scanned twice for these small tables.

Cardinality Rows Sampled

< 1 million rows All rows

1 million – 100 million rows 1 million rows

> 100 million rows 1% of the rows in the table

Table 3-1: Number of rows sampled to build the global
dictionary

Memory usage
The process to build a columnstore index requires a hefty amount
of memory. As a ballpark figure, the amount of required memory
in megabytes can be estimated as [(4.2 * IC) + 68] * T + (ISC *
34), where IC is the number of indexed columns, T is the number
of threads, and ISC is the number of indexed string columns. The
number of rows in the table is not a factor in this formula,
because each thread processes one rowgroup at a time, and
then reuses the same memory to process the next rowgroup. The
only tools we have for reducing the memory footprint of this
process is to reduce the number of columns in a nonclustered
columnstore index, or to reduce the number of threads by forcing
SQL Server to reduce the degree of parallelism. The latter is the
recommended option; this can be done by adding a MAXDOP hint

to the CREATE INDEX statement, or by using Resource

Governor to ensure that the index creation runs in a workload
group with a reduced MAX_DOP setting. You can also use

Resource Governor to directly limit the available memory. Before
you do so, make sure you understand how SQL Server will
respond to memory shortage while creating a columnstore index
– and be aware that this response has changed dramatically from
SQL Server 2012 to SQL Server 2014, as explained below.

Using the Resource Governor

The easiest way to cap degree of parallelism and memory
usage through Resource Governor is to change the settings

javascript:;
javascript:;
javascript:;
javascript:;

of the default workload group. You can do this through the
graphical interface of SQL Server Management Studio
(found under the “Management” tab in the Object Explorer)
and then use the Script button on the Properties window to
save a T-SQL script to make the changes when needed.
Note that this will typically affect all activity on a server, so
make sure to change the settings only just before you need
it, and revert back to the original settings directly after.

There are also alternative ways of allowing additional
resource for the creation of columnstore indexes . Memory
can also be capped at the resource pool level, and you could
even create a dedicated resource pool and/or workload
group for this activity. An extensive treatment of Resource
Governor is beyond the scope of this Stairway. An excellent
article can be found here; https://www.simple-
talk.com/sql/learn-sql-server/resource-governor/.

As an example, let’s return to the nonclustered columnstore we
created in level 1. The number of columns included in the index is
21. One of these columns (SalesOrderNumber) uses a string
datatype (nvarchar(20)); all others are int, money, or

datetime. My laptop has two quad-code CPUs, so a maximum

of 8 threads was available when this executed. When I put these
numbers in the formula above, I calculate an estimated memory
requirement of [(4.2 * 21) + 68] * 8 + (1 * 34) = 1283.6 MB. If I do
not want the index creation process to consume that much
memory, I can reduce it by almost 50% by adding a MAXDOP hint

that limits SQL Server to use only four cores, as shown in listing
3-1. This does not affect the 34 MB for the string column, but all
other memory usage will now be cut in half; the effective total
now is [(4.2 * 21) + 68] * 4 + (1 * 34) = 658.8 MB. The downside
is that the index creation process now will take more time – so I
use less memory, but use it for a longer time. I can tweak the
MAXDOP value further up and down to find the perfect balance for

my system between memory use and execution time.

USE ContosoRetailDW;

CREATE NONCLUSTERED COLUMNSTORE INDEX NCI_Fa

ON dbo.FactOnlineSales

 (OnlineSalesKey,

 DateKey,

 StoreKey,

 ProductKey,

 PromotionKey,

 CurrencyKey,

 CustomerKey,

 SalesOrderNumber,

 SalesOrderLineNumber,

 SalesQuantity,

 SalesAmount,

 ReturnQuantity,

 ReturnAmount,

 DiscountQuantity,

 DiscountAmount,

 TotalCost,

 UnitCost,

 UnitPrice,

 ETLLoadID,

Listing 3-1: Creating the nonclustered columnstore index

Note that the memory usage given by the formula above is an
approximation. The exact memory is determined at run-time. The
easiest way to check the memory used is by looking at the
Memory Grant property in the actual execution plan after running
the CREATE INDEX statement, as shown in figure 3-5. As you

can see, the actual memory reserved for the entire plan was
785,928 KB.

Zoom in | Open in new window

Figure 3-5: Checking the memory grant

It is also possible to look at the memory grant while the query is
running by querying the sys.dm_exec_query_memory_grants
DMV. It is unfortunately not possible to see the exact memory
grant before the query starts. Most queries expose their Memory
Grant in the estimated execution plan as well, but CREATE

INDEX queries are an exception.

Memory shortage
If during the build process the system runs out of memory, the
build process will fail in SQL Server 2012. In SQL Server 2014
the build process will automatically reduce the size of the
rowgroups until sufficient memory is available for all threads. The
result is that the columnstore index will end up having more
rowgroups and segments, but each will be smaller in size.

There may be some cases where this can actually be beneficial.
Having more and smaller segments can in some cases increase
the granularity of segment elimination, reducing the overall
amount of data read further than would have been the case with
larger segments. But these would be the exception, not the rule –
the architecture of columnstore indexes is optimized for a
segment size of one million rows, so while the improved segment
elimination may reduce the amount of data read, you run the risk
of finding that the processing speed of the data is still slower than
it would have been on full-sized rowgroups.

If you think that your data might actually benefit from having
smaller rowgroups, you can force this scaling down of rowgroups
by using the Resource Governor, as described above.It is not
possible to predict the exact rowgroup size that will result, and
you will find that the size changes between executions. My
recommendation is to only do this in a production system after
running extensive tests that show beyond doubt a significant
overall performance increase for all processes in the application,
and repeat these tests after every service pack or major version
upgrade and after every hardware upgrade.

Conclusion

 LoadDate,

 UpdateDate)

WITH (MAXDOP = 4);

javascript:;
javascript:;

Thank this author by sharing: 0

Creating a columnstore index requires a significant amount of
resources. It requires sufficient memory to store all the data for
an entire rowgroup for each thread used in the process, plus
additional memory for the global dictionaries for each string
column. Reducing the degree of parallelism is the recommended
way to reduce the memory footprint.

On SQL Server 2012, insufficient memory will cause the index
creation process to fail. On SQL Server 2014, the process will
continue, but using smaller rowgroups. As a rule of thumb, it is
best to avoid this condition.

The discussion here has focused on manually creating a
columnstore index, but the same process is used (and the same
caveats apply) to various other situations and statements that
cause a columnstore index to be fully or partially (re)built.

This article is part of the Stairway to Columnstore Indexes
Stairway

Sign up to our RSS feed and get notified as soon as we publish a
new level in the Stairway!

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Total article views: 5108 | Views in the last 30 days: 117

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/Xml/Rss/stairways
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1685026.aspx
javascript:;

