

Custom Search

DBA Dev BI Categories

Backup SQL Server Databases with a Windows
PowerShell Script

Free Webcast - Simplify SQL Server Administration

Problem
In a previous tip on Backup and Restore SQL Server databases programmatically with SMO, you've seen

how you can use Windows PowerShell to backup and restore SQL Server databases. In this tip, I will cover

how to use Windows PowerShell to generate SQL Server backups.

Solution
Generating and maintaining backups are the most important tasks that any DBA has to fulfill. And, as

mentioned in the previous tip, SMO can be used to backup and restore a database. There are different ways

to backup a database, depending on company policies on disaster recovery. We will be introducing a new

SMO namespace that will allow us to create the Backup object. This is an added line in our previous

PowerShell scripts to create a new instance of the Backup object.

https://www.mssqltips.com/ss.asp?id=3683&link=https://www.mssqltips.com/mssqltips-giveaway-vslive-boston/?ref=ss20180331
https://www.mssqltips.com/
https://www.mssqltips.com/sql-server-dba-resources/
https://www.mssqltips.com/sql-server-developer-resources/
https://www.mssqltips.com/sql-server-business-intelligence-resources/
https://www.mssqltips.com/sql-server-categories/
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvpss9nd0JAiLS7RYIqq-na7xeEpd4gxSLPmp7k1OEnRruAIsqQh9qdDi0WvrZNOwaPcW63BHJEdGTIS-7jgyBevA1xMmwrIBkdXLHQmixHdv982EmxtH2rJL5cEGHWJ2RagGhqn2PUfs2i4AuqpaXqpMKzAyAZDxFEpgp4lgqwcCI-eTmKSWzxRxCWtK0P36NdgysC8VeCTkJW3E8oKy5EvhvPMqkX8l54CA36S6Dy1UOqeoQ_qw&sig=Cg0ArKJSzLE-tHMpYyIS&adurl=https://www.mssqltips.com/sqlservertutorial/160/sql-server-stored-procedure-tutorial/
https://www.mssqltips.com/sql-server-webcast-signup/?id=688&src=tips
https://www.mssqltips.com/sqlservertip/1849/backup-and-restore-sql-server-databases-programmatically-with-smo/
https://www.mssqltips.com/category.asp?catid=8
https://www.mssqltips.com/sql-server-tip-category/161/backup/
https://www.mssqltips.com/sqlservertip/1849/backup-and-restore-sql-server-databases-programmatically-with-smo/
https://www.mssqltips.com/sql-server-tip-category/161/backup/
https://www.mssqltips.com/sql-server-tip-category/4/disaster-recovery/
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backup.aspx
https://www.mssqltips.com/sql-server-tip-category/81/powershell/

$dbBackup = new-object ("Microsoft.SqlServer.Management.Smo.Backup")

The first property of the Backup object that we need to assign is the name of the database that we need to

do a backup on. This is defined by the Database property of the Backup object. The code snippet below

defines a Database property for the Backup object to perform a backup on the Northwind database.

$dbBackup.Database = "Northwind"

Whenever you generate or create backups, SMO considers this as a Device. This requires us to add the

Backup file to the Devices collection of the Backup object, specifying the DeviceType as File. The first

parameter in the AddDevice method of the Devices collection is the file name of the backup file with the full

path as stored in the file system whereas the second parameter is the DeviceType. While SQL Server

supports the use of devices, I normally recommend using the file system to easily identify the backup sets

based on the file name using the proper naming convention (one thing you would not want to be worried

about during disaster recovery is scrambling to find the valid backup sets).

$dbBackup.Devices.AddDevice("yourDBbackupFile.bak", "File")

The next important property of the Backup object that we are interested in is the Action property. The Action

property sets the type of backup to be performed - Database, Log or File. The default value of the Action

property is set to Database. This property is of importance based on the definition of our service level

agreement as you don't just generate backups without understanding the defined SLAs for a specific

database or application. For our example, we will define a FULL database backup

$dbBackup.Action = "Database"

Once we have defined the properties of our Backup object, it's just a matter of calling the SqlBackup method

of the Backup object. The SqlBackup method performs the backup operation as defined by the properties

you have set in the Backup object. It accepts a parameter of type Server which represents the SQL Server

instance that you have defined as the source of the backup operation.

$dbBackup.SqlBackup($s)

Combining the code snippets above, here is a working Windows PowerShell script to perform a FULL

database backup against the Northwind database, storing the backup file in your file system.

[System.Reflection.Assembly]::LoadWithPartialName('Microsoft.SqlServer.SMO') | out-null

$s = New-Object ('Microsoft.SqlServer.Management.Smo.Server') "LOCALHOST\SQL2005_1"

#Create a Backup object instance with the Microsoft.SqlServer.Management.Smo.Backup namespace

$dbBackup = new-object ("Microsoft.SqlServer.Management.Smo.Backup")

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backuprestorebase.database.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backuprestorebase.devices.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.devicetype.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backupdevicelist.adddevice.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backup.action.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backup.sqlbackup.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.server.aspx

#Set the Database property to Northwind

$dbBackup.Database = "Northwind"

#Add the backup file to the Devices collection and specify File as the backup type

$dbBackup.Devices.AddDevice("D:\PSScripts\backups\NWind_FULL.bak", "File")

#Specify the Action property to generate a FULL backup

$dbBackup.Action="Database"

#Call the SqlBackup method to generate the backup

$dbBackup.SqlBackup($s)

Now, since you won't be performing backups of just a single database, it would be better if we loop the entire

script in a For-Each cmdlet iterating thru the Databases collection of the Server object.

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.SMO") | out-null

$s = new-object ("Microsoft.SqlServer.Management.Smo.Server") $instance

$bkdir = "D:\PSScripts\backups" #We define the folder path as a variable

$dbs = $s.Databases

foreach ($db in $dbs)

{

 if($db.Name -ne "tempdb") #We don't want to backup the tempdb database

 {

 $dbname = $db.Name

 $dt = get-date -format yyyyMMddHHmm #We use this to create a file name based on the timestamp

 $dbBackup = new-object ("Microsoft.SqlServer.Management.Smo.Backup")

 $dbBackup.Action = "Database"

 $dbBackup.Database = $dbname

 $dbBackup.Devices.AddDevice($bkdir + "\" + $dbname + "_db_" + $dt + ".bak", "File")

 $dbBackup.SqlBackup($s)

 }

}

While my only condition for generating backups is to exclude the tempdb database, you can include other

conditions such as querying the database property if it is used for database mirroring (IsMirroringEnabled

property) or specifying database names if you are sure enough that you won't be needing backups for them.

While not really necessary, you also might want to include other Backup object properties such as

BackupSetName, BackupSetDescription, and MediaDescription as they can be of help in case you wanted to

find out the contents of your backup sets.

NOTE: If you have SQL Server 2008 Client Tools installed on your workstation where you intend to run this

PowerShell script, it is important that you add a reference to the Microsoft.SqlServer.SmoExtended
namespace. The Backup object and a few other objects were moved from the Microsoft.SqlServer.Smo to

the Microsoft.SqlServer.SmoExtended. In the example I provided, I have SQL Server 2005 and SQL

Server 2008 running on my machine, thus, requiring that I add a reference to the

Microsoft.SqlServer.SmoExtended namespace. SQL Server MVP Allen White has blogged about Loading

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.database.ismirroringenabled.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backup.backupsetdescription.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backup.backupsetdescription.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backup.mediadescription.aspx
https://mvp.support.microsoft.com/profile/Allen.White
http://sqlblog.com/blogs/allen_white/archive/2008/12/07/loading-smo-assemblies-into-powershell.aspx

SMO Assemblies in PowerShell and explains using a custom script to load appropriate SMO assemblies

depending on the SQL Server version.

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.SMO")| out-null

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.SmoExtended")| out-null

Generating Differential and Log Backups
Depending on your service level agreement, you would also need to define either Differential or Log backups

to complement your Full backups. This can be done by changing the Action property of the Backup object to

either Log for Log backups or setting the Incremental property of the Backup object to a value of 1. Below is

a code snippet for generating Log backups, simply by changing the Action property.

$dbBackup.Action = "Log"

Note that you can only do Log backups on databases that are not configured to use the SIMPLE recovery

model. This means that your condition for generating Log backups would include a check on the

RecoveryModel property

if($db.RecoveryModel -ne 3) #Don't issue Log backups for DBs with RecoveryModel=3 or SIMPLE

{

$dbname = $db.Name

$dt = get-date -format yyyyMMddHHmm #Create a file name based on the timestamp

$dbBackup = new-object ("Microsoft.SqlServer.Management.Smo.Backup")

$dbBackup.Action = "Log"

$dbBackup.Database = $dbname

$dbBackup.Devices.AddDevice($bkdir + "\" + $dbname + "_log_" + $dt + ".trn", "File")

$dbBackup.SqlBackup($s)

}

For Differential backups, you would need to replace the Action property with the Incremental property and set

the value to 1

if($db.Name -ne "tempdb")

{

$dbname = $db.Name

$dt = get-date -format yyyyMMddHHmm #Create a file name based on the timestamp

$dbBackup = new-object ("Microsoft.SqlServer.Management.Smo.Backup")

$dbBackup.Incremental = 1

$dbBackup.Database = $dbname

$dbBackup.Devices.AddDevice($bkdir + "\" + $dbname + "_diff_" + $dt + ".bak", "File")

$dbBackup.SqlBackup($s)

}

Your backup strategies, depending on your service level agreement, will definitely include a combination of

either Full and Differential and/or Log backups.

Next Steps

http://sqlblog.com/blogs/allen_white/archive/2008/12/07/loading-smo-assemblies-into-powershell.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backup.incremental.aspx
http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.database.recoverymodel.aspx

Read more on the Backup class in SMO

Review the tip Backup and Restore SQL Server databases programmatically with SMO

Test how you can use Windows PowerShell to generate your SQL Server backups.

Last Update: 2009-10-20

About the author

Post a comment or let the author know this tip helped.
All comments are reviewed, so stay on subject or we may delete your comment. Note: your email address

is not published. Required fields are marked with an asterisk (*).

Edwin M Sarmiento is a Microsoft SQL Server MVP and Microsoft Certified Master from Ottawa,
Canada specializing in high availability, disaster recovery and system infrastructures.

View all my tips
Related Resources

More SQL Server DBA Tips...

http://msdn.microsoft.com/en-us/library/microsoft.sqlserver.management.smo.backup.aspx
https://www.mssqltips.com/sqlservertip/1849/backup-and-restore-sql-server-databases-programmatically-with-smo/
https://www.mssqltips.com/sql-server-tip-category/81/powershell/
https://www.mssqltips.com/sql-server-tip-category/161/backup/
https://www.mssqltips.com/sql-server-webcast-signup/?id=696&src=tipbot
https://www.mssqltips.com/sql-server-tip-category/81/powershell/
https://www.mssqltips.com/sqlserverauthor/18/edwin-sarmiento/
https://www.mssqltips.com/sqlserverauthor/18/edwin-sarmiento/
https://www.mssqltips.com/sql-server-dba-resources/

*Name *Email Notify for
updates

Send me SQL tips:

I'm not a robot
reCAPTCHA
Privacy - Terms

 Save Comment

Tuesday, August 20, 2013 - 3:00:15 PM - bass_player Back To Top

Did you restart the SQL Server service? Plus, a simple TELNET test on the port number that SQL Server

Express is listening on will tell you if the port is opened. Check the SQL Server error log for the IP address

and the port number that SQL Server Express is listening on

Tuesday, August 20, 2013 - 12:42:01 PM - Patrick B Back To Top

@bass_player

TCP/IP Is already enabled. I have tried specifying the database by IP address and by it's UNC.

Tuesday, August 20, 2013 - 11:51:40 AM - bass_player Back To Top

Try these steps

1. Open up the SQL Server Configuration Manager. Programs / Microsoft SQL Server 2008 / Configuration Tools / SQL Server
Configuration Manager.

*** NOTE *** - If you want to include code from SQL Server Management Studio (SSMS) in your post, please copy the code from SSMS and paste the
code into a text editor like NotePad before copying the code below to remove the SSMS formatting.

p

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/

2. Expand the SQL Server Network Configuration node and select the Protocols for SQLEXPRESS

3. Enable TCP/IP by right-clicking and selecting Enable, then OK.

4. Click on the SQL Server Services node and in the right panel right-click SQL Server (EXPRESS) and select restart to restart the
service.

5. Right-click on the SQL Server Browser and select start to start the browser service if it isn't started already. This will allow you to
access the SQL Express instance by the computer name.

Tuesday, August 20, 2013 - 8:45:47 AM - Patrick B Back To Top

I am trying to get this to work on a remote instance of SQL Server Express 2008 R2. I have SQL

Manegement Tools for SQL 2005 installed on my local machine. I am able to create the new object but it

will not connect to my remote server.

First question, is there a setting I need to enable to allow remote connections or is that even possible with a

SQL Server Express 208 R2?

Monday, July 29, 2013 - 6:41:31 PM - Mark R Back To Top

I took the code listed in the box right under "it would be better if we loop the entire script in a For-Each
cmdlet iterating thru the Databases collection of the Server object." and attempted to run that under

powershell. The below is the resulting errors which look like to a 30+ year UNIX vet as "you didn't load a

series of libraries/this is one of them thar object-driven shells and you didn't load the correct objects".

Given this is my 1st attempt at powershell, my knowledge of what should/should not be pre-loaded is

lacking.

Assume a new Windows 8 box, Microsoft 2012 SQL server and someone who's never touched Powershell.

So what are the other magic incantations to make the script you give above work?

As taken from the above:

[System.Reflection.Assembly]::LoadWithPartialName("Microsoft.SqlServer.SMO") | out-null

$s = new-object ("Microsoft.SqlServer.Management.Smo.Server") $instance

$bkdir = "c:\Backups SQL" #We define the folder path as a variable

$dbs = $s.Databases

foreach ($db in $dbs)

{

 if($db.Name -ne "tempdb") #We don't want to backup the tempdb database

