
Thank this author by sharing: 0

2011/03/10

FORUM

2012/04/10
FORUM

2013/03/14

BLOG

2009/07/18
FORUM

2010/12/02

BLOG

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Keep up to date -
daily newsletter:

your@email.com

Sign up

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Clustered Indexes:
Stairway to SQL Server
Indexes Level 3
By David Durant, 2013/01/25 (first
published: 2011/06/22)

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

The preceding levels in this Stairway provided an overview of
indexes in general and of nonclustered indexes specifically. It
concluded with the following key concept regarding SQL Server
indexes. When a request arrives at your database, be it a
SELECT statement or an INSERT, UPDATE or DELETE
statement, SQL Server has only three possible ways to access
the data of a table referenced in the statement:

Access just the nonclustered index and avoid accessing the
table. This in only possible if the index contains all the data for
this table that is being requested by the query
Use the search key(s) to access the index, and then use the
selected bookmark(s) to access individual rows of the table.
Ignore the index and search the table for the requested rows.

This level begins by focusing on the third choice in the above list;
searching the table. This in turn, will lead us to a discussion of
clustered indexes; a subject that was mentioned, but not covered,
in Level 2.

The primary AdventureWorks database table that we will be using
during this level is the SalesOrderDetail table. At 121,317 rows,
it is large enough to illustrate some benefits of a having clustered
index on a table. And, having two foreign keys, it is complex
enough to illustrate some the design decisions you must make
about your clustered indexes.

Sample Database
Although we already discussed the sample database in Level 1, it
bears repeating at this time. Throughout this Stairway we will use
examples to illustrate concepts. These examples are based upon

Related Articles

Insert on a clustered index - is
column ordering (ASC or DESC)
important ?

insert clustered index column order asc
desc

clustered index

clustered index

SQL Server : Part 4 :Explaining
the Non Clustered Index
Structure

A table can have only one clustered index
as the data rows are stored in the order of
the clustered....

Clustered Index

SQL Server(clustered Index)

Clustered index vs Non
clustered index

Clustered index vs Non clustered index
structure Clustered and Non clustered
indexes are stored in...

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=355675&zid=15220&t=1522616022&auth=c0c0356df5080fe565b9b0f72b3446c4
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72351%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=362444&zid=15491&t=1522616022&auth=c991bf2f768bf4721dcaa9a56d2757cb
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1063682.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Forums/FindPost1076278.aspx
http://www.sqlservercentral.com/Forums/FindPost484150.aspx
http://www.sqlservercentral.com/blogs/practicalsqldba/2013/03/14/sql-server-part-4-explaining-the-non-clustered-index-structure-/
http://www.sqlservercentral.com/Forums/FindPost755310.aspx
http://www.sqlservercentral.com/blogs/sql-server-blog-forum/2010/12/02/clustered-index-vs-non-clustered-index/
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

the Microsoft AdventureWorks sample database. We focus on
sales orders. Five tables will give us a good mix of transactional
and non-transactional data; Customer, SalesPerson, Product,
SalesOrderHeader, and SalesOrderDetail. To keep things
focused, we use a subset of the columns. Because
AdventureWorks is well normalized, sales person information is
factored into three tables: SalesPerson, Employee and Contact.

Throughout this Stairway we use the following two terms that
refer to a single line on an order interchangeably: “line item” and
“order detail”. The former is the more common business term;
the latter appears within the name of an AdventureWorks table.

The complete set of tables, and the relationships between them,
is shown in Figure 1.

Zoom in | Open in new window

Figure 1: The tables used in the examples in this Stairway

Note:
All TSQL code shown in this Stairway level can be
downloaded along with article.

Clustered Indexes
We start by asking the following question: how much work is
required to find a row(s) in a table if a nonclustered index is not
used? Does searching the table for the requested rows mean
scanning every row in an unordered table? Or could SQL Server
permanently sequence the rows of the table so that it could
quickly access them by search key, just as it quickly accesses the
entries of a nonclustered index by search key? The answer
depends upon whether you instructed SQL Server to create a
clustered index on the table or not.

Unlike nonclustered indexes, which are a separate object and
occupy their own space, the clustered index and the table are
one and the same. By creating a clustered index, you instruct
SQL Server to sort the rows of the table into index key sequence
and to maintain that sequence during future data modifications.
Upcoming levels will look at the internal data structures that are
generated to accomplish this. But for now, think of a clustered
index as a sorted table. Given the index key value for a row, SQL
Server can quickly access that row; and can proceed sequentially
through the table from that row.

For demonstration purposes we create two copies of our example
table, SalesOrderDetail; one with no indexes and one with a
clustered index. Regarding the index’s key columns, we make
the same choice that designers of the AdventureWorksdatabase

javascript:;
javascript:;

made: SalesOrderID / SalesOrderDetailID. The code in Listing 1
makes the copies of the SalesOrderDetail table. We can rerun
this code anytime we wish to start with a ‘clean slate’.

Listing 1: Create copies of the SalesOrderDetail table

So, assume the SalesOrderDetail table looks like this before a
clustered index is created:

SalesOrderID SalesOrderDetailID ProductID

OrderQty UnitPrice

69389 102201 864

3 38.10

56658 59519 711

1 34.99

59044 70000 956

 2 1430.442

48299 22652 853

4 44.994

50218 31427 854

8 44.994

53713 50716 711

1 34.99

50299 32777 739

1 744.2727

45321 6303 775

6 2024.994

72644 115325 873

1 2.29

48306 22705 824

4 141.615

69134 101554 876

1 120.00

48361 23556 760

3 469.794

53605 50098 888

1 602.346

48317 22901 722

1 183.9382

66430 93291 872

IF EXISTS (SELECT * FROM sys.tables

WHERE OBJECT_ID = OBJECT_ID('dbo.SalesOrderD

DROP TABLE dbo.SalesOrderDetail_index;

GO

IF EXISTS (SELECT * FROM sys.tables

WHERE OBJECT_ID = OBJECT_ID('dbo.SalesOrderD

DROP TABLE dbo.SalesOrderDetail_noindex;

GO

SELECT * INTO dbo.SalesOrderDetail_index FRO

SELECT * INTO dbo.SalesOrderDetail_noindex

GO

CREATE CLUSTERED INDEX IX_SalesOrderDetail

ON dbo.SalesOrderDetail_index (SalesOrderID

GO

1 8.99

65281 90265 889

2 602.346

52248 43812 871

1 9.99

47978 20189 794

2 1308.9375

After creating the clustered index shown above, the resulting
table / clustered index would look like this:

SalesOrderID SalesOrderDetailID ProductID

OrderQty UnitPrice

43668 106 722

3 178.58

43668 107 708

1 20.19

43668 108 733 3

 356.90

43668 109 763

3 419.46

43669 110 747

1 714.70

43670 111 710

1 5.70

43670 112 709

2 5.70

43670 113 773

2 2,039.99

43670 114 776

1 2,024.99

43671 115 753

1 2,146.96

43671 116 714

2 28.84

43671 117 756

1 874.79

43671 118 768

2 419.46

43671 119 732

2 356.90

43671 120 763

2 419.46

43671 121 755

2 874.79

43671 122 764

2 419.46

43671 123 716

1 28.84

43671 124 711

1 20.19

43671 125 708

1 20.19

43672 126 709

6 5.70

43672 127 776

2 2,024.99

43672 128 774

1 2,039.99

43673 129 754

1 874.79

43673 130 715

3 28.84

43673 131 729

1 183.94

As you look at the sample data shown above, you may notice
that each SalesOrderDetailID value is unique. Do not be
confused; SalesOrderDetailID is not the primary key of the table.
The combination of SalesOrderID / SalesOrderDetailID is the
primary key of the table; as well as the index key for the clustered
index.

Understanding the Basics of Clustered
Indexes
The clustered index key can be comprised of any columns you
chose; it does not have to be based on the primary key. In our
example here, what is most important is that the left most column
of the key is a foreign key, the SalesOrderID value. Thus, all line
items for a sales order appear consecutively within the
SalesOrderDetail table.

Keep in mind these additional points about SQL Server clustered
indexes:

Because the entries of the clustered index are the rows of the
table, there is no bookmark value in a clustered index entry.
When SQL Server is already at a row, it does not need a piece
of information that tells it where to find that row.
A clustered index always covers the query. Since the index
and the table are one and the same, every column of the table
is in the index.
Having a clustered index on a table does not impact your
options for creating nonclustered indexes on that table.

Choosing the Clustered Index Key
Column(s)
There can be, at most, one clustered index per table. The rows
of a table can be in only one sequence. You need to decide what
sequence, if any, would be best for each table; and, if possible,
create the clustered index before the table becomes filled with
data. When making this decision, keep in mind that sequencing
not only means ordering, it also means grouping; as in grouping
line items by sales order.

This is why the designers of the AdventureWorksdatabase chose
SalesOrderDetailID within SalesOrderID as the sequence for the
SalesOrderDetail table; it is the natural sequence for line items.
For instance, if a user requests a line item of an order, they will
usually request all the line items for that order. One look at a
typical sales order form tells us that a printed copy of the order
always includes all the line items. It is the nature of the sales
order business to cluster line items by sales order. There may be
an occasional request from the warehouse wanting to view line
items by product rather than by sales order; but the majority of
the requests; such as those from sales people, or customers, or
the program that prints invoices, or a query that calculates the
total value of each order; will need all the line items for any given
sales order.

User requirements alone, however, do not determine what would
be the best clustered index. Future levels in this series will cover

the internals of indexes; because certain internal aspects of
indexing will also influence your choice of clustered index
columns.

Heaps
If there is no clustered index on a table, the table is called a
heap. Every table is either a heap or a clustered index. So,
although we often state that every index falls into one of two
types, clustered or nonclustered; it is equally important to note
that every table falls into one of two types; it is a clustered index
or it is a heap. Developers often say that a table “has” or “does
not have” a clustered index, but it is more meaningful to say that
the table “is” or “is not” a clustered index.

There is only one way for SQL Server to search a heap when
looking for rows (excluding the use of nonclustered indexes), and
this is to start at the very first row in the table and proceed
through the table until all the rows have been read. Without a
sequence, there is no search key and no way to quickly navigate
to specific rows.

Comparing a Clustered Index with a
Heap
To evaluate the performance of a clustered index versus a heap,
listing 1 makes two copies of the SalesOrderDetailtable. One
copy is the heap version, On the other, we create the same
clustered index that is on the original table (SalesOrderID,
SalesOrderDetailID). Neither table has any nonclustered
indexes.

We will run the same three queries against each version of the
table; one that retrieves a single row, one that retrieves all rows
for a single order, and one that retrieves all rows for a single
product. We present the SQL and the results of each execution
in the tables shown below.

Our first query retrieves a single row and the execution details
are shown in Table 1.

SQL SELECT *
FROM SalesOrderDetail
WHERE SalesOrderID = 43671
AND SalesOrderDetailID = 120

Heap (1 row(s) affected)
Table 'SalesOrderDetail_noindex'. Scan
count 1, logical reads 1495.

Clustered Index (1 row(s) affected)
Table 'SalesOrderDetail_noindex'. Scan
count 1, logical reads 3.

Impact of having the
Clustered Index

IO reduced from 1495 reads to 3 reads.

Comments No surprise. Table scanning 121,317 rows
to find just one is not very efficient.

Table 1: Retrieving a single row

Our second query retrieves all rows for a single Sales Order, and
you can see the execution details in Table 2.

SQL SELECT *
FROM SalesOrderDetail
WHERE SalesOrderID = 43671

Heap (11 row(s) affected)

Table 'SalesOrderDetail_noindex'. Scan count 1,
logical reads 1495.

Clustered
Index

(11 row(s) affected)
Table 'SalesOrderDetail_noindex'. Scan count 1,
logical reads 3.

Impact of
having the
Clustered
Index

IO reduced from 1495 reads to 3 reads.

Comments Same statistics as the previous query. The heap still
required a table scan, while the clustered index
grouped the 11 detail rows of the requested order
sufficiently close together so that the IO required to
retrieve 11 rows was the same as the IO required to
retrieve one row. An upcoming Level will explain in
detail why no additional reads were required to
retrieve the additional 10 rows.

Table 2: Retrieving all rows for a single SalesOrder

And our third query retrieves all rows for a single Product, with
the execution results as shown in Table 3.

SQL
SELECT *
FROM SalesOrderDetail
WHERE ProductID = 755

Heap
(228 row(s) affected)
Table 'SalesOrderDetail_noindex'. Scan count 1,
logical reads 1495.

Clustered
Index

(228 row(s) affected)
Table 'SalesOrderDetail_index'. Scan count 1, logical
reads 1513.

Impact of
having the
Clustered
Index

IO slightly greater for the clustered index version;
1513 reads versus 1495 reads.

Comments Without a nonclustered index on the ProductID
column to help find the rows for a single Product,
both versions had to be scanned. Because of the
overhead of having a clustered index, the clustered
index version is the slightly larger table; therefore
scanning it required a few more reads than scanning
the heap.

Table 3: Retrieving all rows for a single Product

Our first two queries greatly benefitted from the presence of the
clustered index; the third was approximately equal. Are there
times when a clustered index is a detriment? The answer is yes,
and it is mostly related to inserting, updating and deleting rows.
Like so many other aspects of indexing encountered in these
early Levels, it too is a subject that will be covered in more detail
in a higher Level.

In general, the retrieval benefits outweigh the maintenance
detriments; making a clustered index preferable to a heap. If you
are creating tables in an Azure database, you have no choice;
every table must be a clustered index.

Conclusion
A clustered index is a sorted table whose sequence is specified
by you when the index is created, and maintained by SQL

