
Azure / SQL Database

Controlling and granting database access

In this article

Unrestricted administrative accounts

 03/16/2018 • 11 minutes to read • Contributors

Unrestricted administrative accounts

Additional server-level administrative roles

Non-administrator users

Groups and roles

Permissions

Next steps

After firewall rules have been configured, people can connect to a SQL Database as one of the

administrator accounts, as the database owner, or as a database user in the database.

 Note

This topic applies to Azure SQL server, and to both SQL Database and SQL Data Warehouse

databases that are created on the Azure SQL server. For simplicity, SQL Database is used when

referring to both SQL Database and SQL Data Warehouse.

 Tip

For a tutorial, see Secure your Azure SQL Database.

There are two administrative accounts (Server admin and Active Directory admin) that act as

administrators. To identify these administrator accounts for your SQL server, open the Azure portal, and

navigate to the properties of your SQL server.

 Feedback Edit Share | Theme Light

 Logins and users

FEEDBACK

https://docs.microsoft.com/en-us/azure/index
https://docs.microsoft.com/en-us/azure/sql-database/
https://github.com/CarlRabeler
https://github.com/BYHAM
https://github.com/stevestein
https://github.com/cjgronlund
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-security-tutorial
https://github.com/Microsoft/azure-docs/blob/master/articles/sql-database/sql-database-manage-logins.md
https://azure.microsoft.com/en-us/

Configuring the firewall

Server admin

When you create an Azure SQL server, you must designate a Server admin login. SQL server

creates that account as a login in the master database. This account connects using SQL Server

authentication (user name and password). Only one of these accounts can exist.

Azure Active Directory admin

One Azure Active Directory account, either an individual or security group account, can also be

configured as an administrator. It is optional to configure an Azure AD administrator, but an Azure

AD administrator must be configured if you want to use Azure AD accounts to connect to SQL

Database. For more information about configuring Azure Active Directory access, see Connecting to

SQL Database or SQL Data Warehouse By Using Azure Active Directory Authentication and SSMS

support for Azure AD MFA with SQL Database and SQL Data Warehouse.

The Server admin and Azure AD admin accounts has the following characteristics:

These are the only accounts that can automatically connect to any SQL Database on the server. (To

connect to a user database, other accounts must either be the owner of the database, or have a

user account in the user database.)

These accounts enter user databases as the dbo user and they have all the permissions in the user

databases. (The owner of a user database also enters the database as the dbo user.)

These accounts do not enter the master database as the dbo user and they have limited

permissions in master.

These accounts are not members of the standard SQL Server sysadmin fixed server role, which is

not available in SQL database.

These accounts can create, alter, and drop databases, logins, users in master, and server-level

firewall rules.

These accounts can add and remove members to the dbmanager and loginmanager roles.

These accounts can view the sys.sql_logins system table.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-aad-authentication
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-ssms-mfa-authentication

Administrator access path

Connecting to a database by using SQL Server Management Studio

When the server-level firewall is configured for an individual IP address or range, the SQL server admin

and the Azure Active Directory admin can connect to the master database and all the user databases.

The initial server-level firewall can be configured through the Azure portal, using PowerShell or using the

REST API. Once a connection is made, additional server-level firewall rules can also be configured by

using Transact-SQL.

When the server-level firewall is properly configured, the SQL server admin and the Azure Active

Directory admin can connect using client tools such as SQL Server Management Studio or SQL Server

Data Tools. Only the latest tools provide all the features and capabilities. The following diagram shows a

typical configuration for the two administrator accounts.

When using an open port in the server-level firewall, administrators can connect to any SQL Database.

For a walk-through of creating a server, a database, server-level firewall rules, and using SQL Server

Management Studio to query a database, see Get started with Azure SQL Database servers, databases,

and firewall rules by using the Azure portal and SQL Server Management Studio.

 Important

It is recommended that you always use the latest version of Management Studio to remain

synchronized with updates to Microsoft Azure and SQL Database. Update SQL Server Management

Studio.

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-started-portal
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-started-powershell
https://msdn.microsoft.com/library/azure/dn505712.aspx
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-configure-firewall-settings
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-get-started-portal
https://msdn.microsoft.com/library/mt238290.aspx

Additional server-level administrative roles

Database creators

In addition to the server-level administrative roles discussed previously, SQL Database provides two

restricted administrative roles in the master database to which user accounts can be added that grant

permissions to either create databases or manage logins.

One of these administrative roles is the dbmanager role. Members of this role can create new databases.

To use this role, you create a user in the master database and then add the user to the dbmanager

database role. To create a database, the user must be a user based on a SQL Server login in the master

database or contained database user based on an Azure Active Directory user.

1. Using an administrator account, connect to the master database.

Copy

CREATE LOGIN Mary WITH PASSWORD = '<strong_password>';

Copy

CREATE USER [mike@contoso.com] FROM EXTERNAL PROVIDER;
CREATE USER Tran WITH PASSWORD = '<strong_password>';
CREATE USER Mary FROM LOGIN Mary;

2. Optional step: Create a SQL Server authentication login, using the CREATE LOGIN statement.

Sample statement:

 Note

Use a strong password when creating a login or contained database user. For more

information, see Strong Passwords.

To improve performance, logins (server-level principals) are temporarily cached at the database

level. To refresh the authentication cache, see DBCC FLUSHAUTHCACHE.

3. In the master database, create a user by using the CREATE USER statement. The user can be an

Azure Active Directory authentication contained database user (if you have configured your

environment for Azure AD authentication), or a SQL Server authentication contained database

user, or a SQL Server authentication user based on a SQL Server authentication login (created in

the previous step.) Sample statements:

https://msdn.microsoft.com/library/ms189751.aspx
https://msdn.microsoft.com/library/ms161962.aspx
https://msdn.microsoft.com/library/mt627793.aspx
https://msdn.microsoft.com/library/ms173463.aspx

Login managers

Non-administrator users

Copy

CREATE USER Mary FROM LOGIN Mary;
CREATE USER [mike@contoso.com] FROM EXTERNAL PROVIDER;

Copy

ALTER ROLE dbmanager ADD MEMBER Mary;
ALTER ROLE dbmanager ADD MEMBER [mike@contoso.com];

4. Add the new user, to the dbmanager database role by using the ALTER ROLE statement. Sample

statements:

 Note

The dbmanager is a database role in master database so you can only add a database user

to the dbmanager role. You cannot add a server-level login to database-level role.

5. If necessary, configure a firewall rule to allow the new user to connect. (The new user might be

covered by an existing firewall rule.)

Now the user can connect to the master database and can create new databases. The account creating

the database becomes the owner of the database.

The other administrative role is the login manager role. Members of this role can create new logins in the

master database. If you wish, you can complete the same steps (create a login and user, and add a user

to the loginmanager role) to enable a user to create new logins in the master. Usually logins are not

necessary as Microsoft recommends using contained database users, which authenticate at the database-

level instead of using users based on logins. For more information, see Contained Database Users -

Making Your Database Portable.

Generally, non-administrator accounts do not need access to the master database. Create contained

database users at the database level using the CREATE USER (Transact-SQL) statement. The user can be

an Azure Active Directory authentication contained database user (if you have configured your

environment for Azure AD authentication), or a SQL Server authentication contained database user, or a

SQL Server authentication user based on a SQL Server authentication login (created in the previous step.)

For more information, see Contained Database Users - Making Your Database Portable.

To create users, connect to the database, and execute statements similar to the following examples:

https://msdn.microsoft.com/library/ms189775.aspx
https://msdn.microsoft.com/library/ff929188.aspx
https://msdn.microsoft.com/library/ms173463.aspx
https://msdn.microsoft.com/library/ff929188.aspx

Copy

GRANT ALTER ANY USER TO Mary;

Configuring the database-level firewall

Non-administrator access path

Initially, only one of the administrators or the owner of the database can create users. To authorize

additional users to create new users, grant that selected user the ALTER ANY USER permission, by using a

statement such as:

To give additional users full control of the database, make them a member of the db_owner fixed

database role using the ALTER ROLE statement.

 Note

The most common reason to create database users based on logins, is when you have SQL Server

authentication users that need access to multiple databases. Users based on logins are tied to the

login, and only one password that is maintained for that login. Contained database users in

individual databases are each individual entities and each maintains its own password. This can

confuse contained database users if they do not maintain their passwords as identical.

As a best practice, non-administrator users should only have access through the firewall to the databases

that they use. Instead of authorizing their IP addresses through the server-level firewall and giving them

access to all databases, use the sp_set_database_firewall_rule statement to configure the database-level

firewall. The database-level firewall cannot be configured by using the portal.

When the database-level firewall is properly configured, the database users can connect using client tools

such as SQL Server Management Studio or SQL Server Data Tools. Only the latest tools provide all the

features and capabilities. The following diagram shows a typical non-administrator access path.

https://msdn.microsoft.com/library/dn270010.aspx

Groups and roles

Permissions

Efficient access management uses permissions assigned to groups and roles instead of individual users.

When using Azure Active Directory authentication, put Azure Active Directory users into an

Azure Active Directory group. Create a contained database user for the group. Place one or

more database users into a database role and then assign permissions to the database role.

When using SQL Server authentication, create contained database users in the database. Place

one or more database users into a database role and then assign permissions to the database

role.

The database roles can be the built-in roles such as db_owner, db_ddladmin, db_datawriter,

db_datareader, db_denydatawriter, and db_denydatareader. db_owner is commonly used to grant full

permission to only a few users. The other fixed database roles are useful for getting a simple database in

development quickly, but are not recommended for most production databases. For example, the

db_datareader fixed database role grants read access to every table in the database, which is usually

more than is strictly necessary. It is far better to use the CREATE ROLE statement to create your own user-

defined database roles and carefully grant each role the least permissions necessary for the business

need. When a user is a member of multiple roles, they aggregate the permissions of them all.

There are over 100 permissions that can be individually granted or denied in SQL Database. Many of

these permissions are nested. For example, the UPDATE permission on a schema includes the UPDATE

permission on each table within that schema. As in most permission systems, the denial of a permission

https://msdn.microsoft.com/library/ms189121
https://msdn.microsoft.com/library/ms191291.aspx
https://msdn.microsoft.com/library/ms189121
https://msdn.microsoft.com/library/ms191291.aspx
https://msdn.microsoft.com/library/ms187936.aspx

