
Thank this author by sharing: 0

2010/03/15
FORUM

2012/04/10
FORUM

2010/02/01

FORUM

2014/04/11
SCRIPT

2008/08/11
FORUM

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Create, Alter, and Drop
Indexes: Stairway to SQL
Server Indexes Level 12
By David Durant, 2012/02/17

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

In Level 10 we looked at the internal structure of an index; and in
Level 11 we looked at a potential side effect of the balanced tree
structure: index fragmentation. With this knowledge of index
structure in mind, we can examine what happens when an index
is impacted by a Data Definition Language statement or by a
Data Manipulation Language statement. In this Level we
examine the impact of the three DDL verbs; CREATE, ALTER
and DROP. In the next Level, we cover the DML verbs; INSERT,
UPDATE and DELETE.

Creating, altering and dropping indexes falls under the subject of
index maintenance. CREATE, ALTER and DROP are the verbs
for index maintenance only because the SQL Server team
wanted all objects to use the same DDL verbs. As you will see in
this Level, when working with indexes these verbs do more than
their names imply; enabling you to create, rebuild, reorganize,
disable, and delete indexes; as well as modify their metadata.

When you create or alter an index, you have a choice of options
to specify. These option values become part of the index’s
metadata and are stored system tables that are exposed to you
through the sys.indexes system view. They are used by SQL
Server when querying and updating data; and during index
maintenance. Note that throughout this Level we mention several
of these options without going into detailed specifics at that point.
Rather, a discussion of all the options appears near the end of
this Level.

The larger your tables, the greater the impact of executing DDL
statements against indexes; both in the consumption of server
resources and in the slowing of other queries that are executing

Related Articles

Rebuild or Reorganize Indexes

Rebuild or Reorganize Indexes

Reorganize Index Task

Reorganize Index Task

Rebuild,Reorganize index job
failed

Rebuild,Reorganize index job failed

Reorganize indexes

Generate script to reorganize indexes in a
database

Reorganize Index

Locks with ALTER INDEX REORGANIZE

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=355675&zid=15220&t=1522616307&auth=119f6f7e85234627407077bed73c6ef1
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72444%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522616307&auth=fb398b630752b03d8763a7102bf376ff
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1118979.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Forums/FindPost880356.aspx
http://www.sqlservercentral.com/Forums/FindPost635117.aspx
http://www.sqlservercentral.com/Forums/FindPost857332.aspx
http://www.sqlservercentral.com/scripts/109031/
http://www.sqlservercentral.com/Forums/FindPost550389.aspx
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

at the same time. By knowing what happens within your indexes
during DDL and DML operations, you can:

Understand the need for regular index maintenance.
Maximize the performance of your maintenance operations.
Minimize the impact of your maintenance operations on other
queries.
Reduce the frequency of this maintenance.

Creating an Index
We begin with creating a clustered index; creating nonclustered
indexes will come later.

What happens when you create a clustered index depends upon
the current state of the table and the CREATE INDEX options
that you specify.

If:

The table already is a clustered index:

An error is raised. A table cannot have two clustered indexes, for
that would cause its rows to be in two different sequences at the
same time; and that is not possible.

The table is empty:

SQL Server updates the system tables to reflect the existence of
the clustered index. No space is allocated at this time.

The table has rows. The table does not have nonclustered
indexes:

SQL Server updates the system tables to reflect the existence of
the clustered index.

SQL Server sorts the rows of the table into index key sequence,
places those rows into pages in compliance with your
FILLFACTOR specification, and generates the non-leaf levels of
the index. External fragmentation will be near zero.

The table has rows. The table has nonclustered indexes:

SQL Server frees all space occupied by the nonclustered
indexes, but retains their metadata.

SQL Server updates the system tables to reflect the existence of
the clustered index.

SQL Server builds the clustered index. (See previous condition.)

The nonclustered indexes are rebuilt in accordance with their
current metadata. There is no other choice; the nonclustered
indexes must be completely rebuilt. The bookmark portion of
each entry was a row id; now it will be the clustered index’s key
value. Thus, each new index entry will be a different size than
the old one.

Therefore, if you are creating several indexes on a table, save
time and effort by creating the clustered index first, and then
creating the nonclustered indexes.

Creating a Nonclustered Index
If:

The table is empty:

SQL Server updates the system tables to reflect the existence of
the nonclustered index. No space is allocated at this time.

The table has rows:

SQL Server updates the system tables to reflect the existence of
the nonclustered index.

SQL Server scans the table, or some other nonclustered index
that contains the needed columns, builds the index entry for each
row, sorts the entries into index key sequence, places those rows
into pages in compliance with your FILLFACTOR option, and
generates the non-leaf levels of the index. External
fragmentation will be near zero.

Altering an Index
ALTER INDEX allows you to do four things:

Disable the index.

Rebuild the index.

Reorganize the index.

Change the index option settings.

Note: One thing ALTER INDEX does not allow you to do is
change the set of columns that comprises the index. This can
only be done by dropping the index and then creating a new one
of the same name containing the desired columns, or by
executing CREATE INDEX with the DROP_EXISTING option
specified.

Disabling an Index
To disable an index, simply use the DISABLE keyword; as in

ALTER INDEX PK_FragTest_PKCol

 ON FragTest

 DISABLE;

GO

Disabling an index does not remove the definition of the index
from the system tables. All disabled indexes can be rebuilt or
dropped at a later time.

Disabling a nonclustered index frees the disk space occupied by
the index. While a nonclustered index is disabled, all queries
behave as if the index did not exist.

Disabling a clustered index frees the disk space occupied by the
non-leaf levels of the index, but leaves the rows of the table
untouched. While a clustered index is disabled, the table cannot
be queried or updated.

Because disabling an index is done by releasing disk space, the
process requires minimal processor time and log file IO.

The primary reason for disabling an index is to save disk space
when rebuilding the index. If the index has not been disabled,
the rebuild process maintains the original version of the index
until the new version has been created; resulting in both versions
consuming disk space at the same time. By deleting the index
first; an entire index’s worth of disk space is saved during the
rebuild process. Rebuilding an index that has been deleted
typically requires about one fifth the disk space that rebuilding an
undeleted index requires.

Rebuilding an Index

Rebuilding an index recreates the index while allowing you
change the option settings, as in:

ALTER INDEX PK_FragTest_PKCol

 ON FragTest

 REBUILD

 WITH (FILLFACTOR = 75

 , SORT_IN_TEMPDB = ON

 , MAXDOP = 3);

Only those options specified in the ALTER INDEX statement will
be updated in the index’s metadata; all others will remain
unchanged.

Thus, after the index has been rebuilt, the external fragmentation
will be near zero; and the page fullness will be at or near the
FILLFACTOR value you specified in the ALTER INDEX
statement. If no FILLFACTOR value was specified in the ALTER
INDEX statement, the FILLFACTOR value from the index’s
metadata will be used.

Reorganizing an Index
Reorganizing an index has one target: fragmentation. (See Level
11 – Index Fragmentation.) It is used to reduce external
fragmentation, and possibly bring page fullness, closer to the
FILLFACTOR value specified in the index’s metadata. As you will
see, reorganizing an index provides fewer options than rebuilding
the index, but reorganizing also requires fewer resources and has
less impact on other users.

Four things to keep in mind about reorganizing an index:

Reorganizing and index never increases the size of the index; no
new extents are assigned to the index. Reorganizing and index
may decrease the size of the index; freeing some no longer
needed pages.

Other processes can use the index while it is being reorganized.

The only option that can be specified when reorganizing and
index is LOB_COMPACTION. Thus, a new FILLFACTOR value
cannot be specified when reorganizing an index.

Reorganizing and index requires that page locks be allowed;
which is the default value. Because other processes can use the
index while it is being reorganized, it is essential that SQL Server
lock individual pages of the index, rather than the entire index,
during the reorganization. If the index’s ALLOW_PAGE_LOCKS
option has be set to OFF, it will not reorganize.

Thus, a typical reorganize statement would look like

ALTER INDEX PK_FragTest_PKCol

 ON FragTest

 REORGANIZE;

Or

ALTER INDEX PK_FragTest_PKCol

 ON FragTest

 REORGANIZE

 WITH (LOB_COMPACTION = OFF);

SQL Server reorganizes an index in two phases.

Phase 1 addresses internal fragmentation.

Phase 1 is limited in what it can do because the reorganization
processes is prohibited from increasing the size of the index; it
can free pages, but it cannot add pages. Thus, an index whose
average page fullness is less than the FILLFACTOR specified in
the index’s metadata can shrink in size when being reorganized,
but an index whose average page fullness is greater than the
FILLFACTOR specified in its metadata cannot grow in size as the
result of reorganization.

Phase 1 processes the index in logical sequence, eight pages at
a time, starting with pages 1 through 8, then 2 through 9, then 3
through 10, until the entire index has been examined. For each
set of eight pages, SQL Server checks to see if the entries on
those eight pages could be squeezed into seven pages without
exceeding the index’s FILLFACTOR. If so, it will compress the
entries into seven pages and free the eighth page.

Phase 2 addresses external fragmentation.

Phase 2 aligns the index’s physical sequence with its logical
sequence, one page at a time. It reads the index’s logically first
page and its physically first page and, if they are not the same
page, swaps their contents. It repeats this process for each
succeeding page of the two sequences. When it completes the
last page swap, the two sequences are identical and external
fragmentation has been minimized.

The end result is an index with minimal external fragmentation
and a possible reduction in internal fragmentation.

This benefit, although limited in functionality when compared to a
rebuild; is achieved without the need for extra disk space; with a
small amount of memory consumption; and while the index is still
available for use by other applications.

So the choice is yours whenever index fragmentation has
become a problem: rebuild, disable and rebuild, or reorganize. In
Level 15 – Best Patterns and Practices, we offer some
recommendations.

Altering the Index’s Metadata
Some of an index’s option settings can be modified without
having to rebuild or reorganize an index.

ALLOW_ROW_LOCKS

ALLOW_PAGE_LOCKS

IGNORE_DUP_KEY

STATISTICS_NORECOMPUTE.

The following SQL statement is example of altering an index to
change settings only.

ALTER INDEX PK_FragTest_PKCol

 ON FragTest

 SET (ALLOW_ROW_lOCKS = ON

 , ALLOW_PAGE_lOCKS = ON

 , STATISTICS_NORECOMPUTE = OFF);

GO

Dropping an Index

When you drop an index, its space allocations are released,
making the disk space available for use by other objects. And
the index’s metadata is deleted from the system tables.

As was mentioned in Level 8 – Unique Indexes, you cannot drop
an index that is supporting a primary key or unique constraint.

It is important to note that dropping a clustered index does not
drop the underlying table. The non-leaf levels’ space allocations
are released. But the leaf level, which is the rows of the table,
remains. The table reverts to being a heap, which means that
any nonclustered indexes will be rebuilt automatically.

Therefore, if you are dropping several indexes, one of which is
the clustered index; save time and effort by dropping the
nonclustered indexes first, then dropping the clustered index.

Options
The CREATE INDEX options can be divided into three
categories:

1. Those options that impact index creation, but not
subsequent index usage. Most options fall into this
category.

2. Those options that impact subsequent index usage, but
not index creation; referred to as post-creation options in
this Stairway. ALLOW_ROW_LOCKS and
ALLOW_PAGE_LOCKS fall into this category.

3. Those options that affect both index creation and post-
creation activity. DATA_COMPRESSION is an example of
this.

The options are listed below. Unless otherwise stated, they
impact index creation only.

FILLFACTOR:

Allows you to specify the desired page fullness. Impacts the leaf-
level pages only. The default value is zero; which does not mean
“leave the page empty”. Rather, it specifies “allow enough empty
space per page for one row to be inserted”.

PAD_INDEX:

Specifies whether the FILLFACTOR will be applied to the non-
leaf levels, in addition to the leaf levels.

SORT_IN_TEMPDB:

Specifies whether the sorting required to create the index will be
done in the table’s database or in tempdb.

IGNORE_DUP_KEY:

Covered in Level 8 – Unique Indexes.

STATISTICS_NORECOMPUTE:

Will be covered in Level 14 – Index Statistics.

DROP_EXISTING:

Note: DROP_EXISTING is only applicable with CREATE INDEX.

DROP_EXISTING = ON:

If an index of the same name and index type (clustered or
nonclustered) exists, that index will be dropped and then a new
index of the same name with the specified definition will be
created. Dropping the old index means that all space occupied
by the old index will be freed, and all metadata for the old index
will be removed, before creation of the new index begins. If you

want the new index to have the same options, such as
FILLFACTOR, as the old index; you must specify those option
values in the CREATE INDEX statement.

If an index of the same name but different index type exists, an
error will be raised.

If no index of the same name exists, a new index with the
specified definition will be created.

DROP_EXISTING = OFF:

If an index of the same name exists, an error will be raised.

If no index of the same name exists, a new index with the
specified definition will be created.

ONLINE:

Specifies whether the index’s table is accessible from other
connections while the index is being created. If a non-clustered
index is being created, SELECT statements will able to access
the table regardless of the setting. Available only in SQL Server
Enterprise, Developer, and Evaluation editions.

ALLOW_ROW_LOCKS and ALLOW_PAGE_LOCKS:

Added in SQL Server 2005 to give database owners some
control over lock escalation. Influences locking within the index,
as shown in Table 11.1.

Settings Allow Row Locks Allow Page Locks Allow Index Lock

Both ON Yes Yes Yes

ROW off – PAGE on No Yes Yes

ROW on – PAGE off Yes No Yes

Both OFF No No Yes

Table 1: Index Locking

These options do not affect the creation of the index; they are
post-creation options. And they have limited impact if row
versioning is used as the database’s concurrency model.

Reorganizing and index requires that page locks be allowed.

Turning off either, or both, option can reduce the amount of lock
escalation that occurs during heavy query loads. Indexes that
are most likely to benefit from this are ones that are heavily
queried but infrequently updated.

Only specify these options if you are an experienced database
owner who understands SQL Server’s locking mechanism, and
who has stress tested the impact of your proposed settings.

MAXDOP:

Used to control the maximum number of processors that can be
used in creating the index.

DATA_COMPRESSION:

Specifies which variant of data compression, if any, will be
applied to this index. Affects both index creation and post-
creation activity. Data compression is beyond the scope of this
Stairway.

Conclusion

