
Thank this author by sharing: 1

2014/07/20

BLOG

2015/02/18

BLOG

2017/06/25

BLOG

2015/07/11
BLOG

2016/06/20

BLOG

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Stairway to Columnstore
Indexes Level 2:
Columnstore Storage
By Hugo Kornelis, 2017/04/21 (first
published: 2015/04/29)

The Series
This article is part of the Stairway Series: Stairway to
Columnstore Indexes

SQL Server 2012 and later offer a very different type of index
from the traditional b-tree, the in-memory columnstore index.
These indexes use a column-based storage model, as well as a
new 'batch mode' of query execution and can offer huge
performance increases for certain workloads. But how are they
built, how do they work, and why do they manage to have such a
dramatic impact on performance? In this stairway, Hugo Kornelis
explains all, with his usual mix of concise description and detailed
demonstration.

The introduction of columnstore indexes in SQL Server 2012 was
a revolutionary step in the world of SQL Server. A new index type
was introduced, based on a completely new storage concept.
This was considered so crucial that the very storage paradigm is
encoded in the name, to remind us every time we use them that
these indexes use a columnar oriented storage structure.

To fully appreciate just how different these indexes are, and why
work so well in reporting and online analytical processing (OLAP)
workloads, but not for online transaction processing (OLTP), we
must first look at the traditional “rowstore” indexes.

Row-oriented storage
Traditionally, all indexes indexes in SQL Server share one
feature: the basic layout of the pages in the database file. For
each row, one single, consecutive block of bytes is used to store
the values in all columns, or all columns included in the index.
Even for LOB data and other varying length data that is too large
to fit on the page, a pointer to the actual data is still included in
the block of bytes that represents a row.

To understand how this works, let’s look at a simple sample table.
(See figure 2-1). Note that this table is for demonstration
purposes only, and is not intended to be an example of good
table design.

Related Articles

Clustered Columnstore Indexes
– part 34 (“Deleted Segments
Elimination”)

Continuation from the previous 33 parts,
starting from
http://www.nikoport.com/2013/07/05/clustered-

Clustered Columnstore Indexes
– part 48 (“Improving Dictionary
Pressure”)

Continuation from the previous 47 parts,
starting from
http://www.nikoport.com/2013/07/05/clustered-

Columnstore Indexes – part 107
(“Dictionaries Deeper Dive”)

Continuation from the previous 106 parts,
the whole series can be found at
http://www.nikoport.com/c...

COLUMNSTORE INDEX… DEMO

COLUMNSTORE INDEX How data is
stored in traditional way For physical
storage of a table, its rows...

Columnstore Indexes – part 84
(“Practical Dictionary Cases”)

Continuation from the previous 83 parts,
the whole series can be found at
http://www.nikoport.com/co...

Tags
columnstore index
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Fresh articles daily:

Get the SQL Server Central
newsletter and get a new SQL
Server article each day. Get
Database Weekly for a roundup of
all the biggest SQL news from
around the web.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=328527&zid=15220&t=1522616711&auth=4346f356d4a77e50f0b8977232e910b4
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f124326%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522616711&auth=e4d5064bb60b3226a780d24652233022
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1673462.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/Hugo_Kornelis/264757/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/blogs/nikos-blog/2014/07/20/clustered-columnstore-indexes-part-34-deleted-segments-elimination/
http://www.sqlservercentral.com/blogs/nikos-blog/2015/02/18/clustered-columnstore-indexes-part-48-improving-dictionary-pressure/
http://www.sqlservercentral.com/blogs/nikos-blog/2017/06/25/columnstore-indexes-part-107-dictionaries-deeper-dive/
http://www.sqlservercentral.com/blogs/sqlserversdba/2015/07/11/columnstore-index-demo/
http://www.sqlservercentral.com/blogs/nikos-blog/2016/06/20/columnstore-indexes-part-84-practical-dictionary-cases/
http://www.sqlservercentral.com/articles/ColumnStore+Index/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

Zoom in | Open in new window

Figure 2-1: Sample table

When SQL Server has to store this data, it will start by writing all
columns of the first row to a page. Then if there is enough space,
the second row will be added to the same page, and so on until
the page is full. And then a new page is allocated and the
process continues. In figure 2-2, you see a graphical
representation of the end product, with different colors used to
visualize the different pages. (In reality, a single page has 8,060
bytes available, so more than three rows will fit on a page; this is
a simplification to visualize the structure – plus, I don’t get paid by
the word, so why bother creating a sample with hundreds of
rows?)

Zoom in | Open in new window

Figure 2-2: Row-oriented storage

This storage structure is ideal for OLTP workloads. If you need to
insert a row, delete a row, or update a row, you make all changes
on just a single page in the data file. And queries that are
selective enough to return only a few rows usually also touch only
a single page, or two pages in the worst case. In the example in
Figure 2-2, if you select all sales for a single day, you need just a
single page for most dates, and still only two for March 20, 2012.

But in reporting and analytical processing, the typical query looks
much different. In a data warehouse (DW), most tables have
dozens of columns (at least), and most queries select only a few
of those columns – forcing SQL Server to process the pages that
contain not only the three columns you need, but also all of the
other columns, even though they are not needed. A second
difference is that typical DW queries are not very restrictive; they
process large amounts of data, using a WHERE clause that
selects millions of rows or even no WHERE clause at all, and
then use aggregates to trim the result set to something a human
can peruse.

So when an information worker is trying to identify a trend in
amounts and net prices over time, they would probably use a
query that selects the Saledate, Amt, and NetPrice column, with
no WHERE clause. In figure 2-3, I have highlighted the required

data in bold and red, and shaded the data actually read from disk
or cache. All the non-bold and italic data is read as well, even
though it is not used in the query. Reading this additional data
causes significant overhead.

javascript:;
javascript:;
javascript:;
javascript:;

Zoom in | Open in new window

Figure 2-3: For DW queries, much more data is read than is
needed

One possible way to alleviate this overhead is to use
nonclustered covering indexes with included columns. A covering
index on only the columns Saledate, Amt, and NetPrice would
make it possible to execute this same data without the additional
overhead. But the next query fired by the same information
worker will probably select a different subset of columns, and it is
simply not feasible to have a nonclustered index on every
perceivable combination of columns.

Column-oriented storage
Data warehouses grow bigger by the day. At the same time,
management has an increased demand to get actionable results
from that huge pile of data – fast! With the unavoidable overhead
introduced by the row-oriented storage structure, this was getting
harder and harder. The only way to deal with this problem was to
make the overhead go away. That is where the new column-
oriented storage structure comes in.

In a columnstore index, data is still stored on the same 8K pages
that SQL Server has been using since SQL Server 7.0. But
instead of filling these pages with complete rows, a columnstore
index isolates all values for a single column and stores them in
one or more pages. The data of the other columns then go into
different pages. Obviously, for columns with a small data type,
more values fit on a single page then for columns with longer
data types. See figure 2-4 for a simplified representation of data
stored in a columnstore index.

Zoom in | Open in new window

Figure 2-4: Column-oriented storage

For OLTP workloads, this storage paradigm spells disaster. To
reconstruct just a single row of data, one full page has to be read
for each column in the table. And then there is also some
overhead required to reconstruct the original row – the only way
of knowing that the sale date March 19, the product Chair, and
the net price of 713.41 belong together is because each of them
is the fifth element in the value list of that column.

But for DW workloads, the reverse holds. If you compare figure 2-
3 and figure 2-4, you will see that the column-oriented storage
paradigm allows SQL Server to read the required data for this
query without reading a single byte of data it does not need.

To see this in action, we can run the code in listing 2-1 in the
database we downloaded in the first level and then created a
nonclustered columnstore index for. On my system, the first query
requires only 92 logical reads, whereas the second query takes
184 logical reads, which is twice as many. Since the data is
stored by column, reading all the data in two columns is twice as
much work as reading all the data in a single column.

javascript:;
javascript:;
javascript:;
javascript:;
http://www.sqlservercentral.com/articles/Stairway+Series/121633/

Listing 2-1: Reading less columns requires less I/O

There are a few additional bonus features to the columnstore
index as well, but to understand them, we have to drill a bit
deeper.

Rowgroups and segments
Columnstore indexes are intended to be used for very large
tables with at least tens of millions of rows. Those tables are
often partitioned, and SQL Server’s columnstore indexes
automatically align with the table’s partition scheme. But even a
single partition will contain several million or even billions of rows.
For a columnstore index, each partition (or unpartitioned table) is
further divided into units called rowgroups, each containing up to
about a million rows. (The actual maximum is 1,048,576 rows –
220 for the binary minded).

A rowgroup is sometimes also called a segment – but that is
technically incorrect. The term segment is actually used for a
single column of a single rowgroup. See figure 2-5 for an
illustration of these concepts.

Zoom in | Open in new window

Figure 2-5: Rowgroups and segments

Segment elimination
With proper forethought, this subdivision into rowgroups and
segments can really work to your advantage. That is because
SQL Server, in the metadata for each individual segment, keeps
track of the minimum and maximum of all the values stored in
that segment. For the sample data depicted above, the metadata
of the Saledate data for the depicted segment would show a
minimum value of 2012-03-08 and the maximum would be 2012-
03-24. Now when a query is executed that needs Product,
GrossPrice, and SalesTax data for sales made in April 2012, a
simple comparison of the values in the WHERE clause with the

metadata for the segment will allow SQL Server to immediately
conclude that there can never be any matching rows in the first
rowgroup – so all the segments of this rowgroup (not just
Saledate, but Product, GrossPrice, and SalesTax as well) are

USE ContosoRetailDW;

GO

SET STATISTICS IO ON;

DECLARE @Dummy int;

SELECT @Dummy = SUM(SalesQuantity)

FROM dbo.FactOnlineSales;

SELECT @Dummy = SUM(SalesQuantity - ReturnQu

FROM dbo.FactOnlineSales;

javascript:;
javascript:;

skipped. SQL Server will only process rowgroups where the
Saledate segment metadata shows that the interval between
minimum and maximum value of Saledate in that column
overlaps with the interval specified in the WHERE clause. This

process is called “segment elimination” – even though the
process actually eliminates entire rowgroups, not just segments.

So far, the process is remarkably similar to the partition
elimination you would get if you had partitioned the table on the
Saledate column. But segment elimination truly takes this to the
next level. Partition elimination works only on the partitioning
column, but segment elimination works on almost every column.
For instance, with the data of figure 2-5, a filter on NetPrice equal
to 3,500 would also immediately rule out the depicted rowgroup,
because the maximum value is 3,403.40. However, a filter on
NetPrice equal to 3,300 would still have to process this rowgroup
to determine that there are no matches, because this cannot be
predicted from the available metadata (which is limited to just the
minimum and maximum).

The only limitation of segment elimination is that it does not work
on string columns. A filter on Product equal to “Xylophone” will
not eliminate the rowgroup, even though we can see that the
maximum value is “Toy car”. This should not be a major limitation
for most use cases; in a properly designed star schema the big
fact tables should have very few string columns, and none that
are filtered on.

The effect of segment elimination can be observed by running the
code in listing 2-2. The results from the query show that there are
more rows with PromotionKey 28 than there are with
PromotionKey 18, yet the first query requires more logical I/O. On
my system, the first query requires 102 logical reads, but the
second uses only 82. That is because there are a few segments
where the highest PromotionKey is less than 28, but none with
maximum PromotionKey less than 18. As a result, some
segments are eliminated for the second query, but not for the
first. Note that the exact results on your system may vary; this is
related to details of how columnstore indexes are built, as will be
explained in a later level.

USE ContosoRetailDW;

GO

SET STATISTICS IO ON;

SELECT COUNT(*)

FROM dbo.FactOnlineSales

WHERE PromotionKey = 18;

SELECT COUNT(*)

FROM dbo.FactOnlineSales

WHERE PromotionKey = 28;

Listing 2-2: Segment elimination in action

In a later level, we will cover how you can inspect the metadata,
and we will also give some guidance on how to ensure that you
get optimal benefit from this “segment elimination” process.

Compression

Data stored in a columnstore index is always compressed. And
the effectiveness of compression achieved for columnstore
indexes is extremely high. The reason for this is that the column-
oriented storage structure causes all data stored on a single page
to be of the same type. That kind of uniform data compresses
much better than the more disparate data found in the data
pages of row-oriented storage structures. In a test I did with
realistic test data, row compression reduced the on-disk data size
to 44% of the original size, and page compression got it down to
25% – but columnstore compression reduced that to just 9.9% of
the original size!

This is not just a savings on disk. When the data has to be read
from disk, far fewer bytes have to be read from storage. This can
result in significant performance benefits. And once it has been
read from disk, it will be stored, still in compressed form, in main
memory for later reuse. Since your servers has a finite amount of
memory, that is used for all the data needed by the SQL Server
instance, compressing the data in a frequently-used large table
can also benefit other queries by increasing the cache hit ratio
and page life expectancy, which in turn will reduce physical I/O
and increase the overall performance of the database server.

The compression algorithms used for columnstore indexes are all
designed to ensure that the extra CPU required for
decompressing the data does not exceed the savings achieved
by the reduced I/O. This is of course very important for data that
is frequently used. But for older data that is only accessed
infrequently, you may decide that a significant saving on the
storage cost is more important than the best possible query
performance. This is now made possible in SQL Server 2014 by
the introduction of the new “Archival Columnstore” compression
mode for columnstore indexes. When this is used, the most
aggressive compression algorithms are used, shaving the total
storage size further down to just 4.5% of the original size; a 55%
reduction when compared to default columnstore mechanism. But
this is not a free lunch – you pay for the reduced disk footprint by
increased CPU use when decompressing the data, so much that
the query performance may deteriorate.

Dictionaries
All data types that store character data ([n]char and [nvarchar),
as well as binary and varbinary, when used in a columnstore
index, use dictionaries for their internal storage. For other
columns, dictionaries may also be used – especially if they use
only a small set of distinct values. Using a dictionary means that
SQL Server creates a list of all values that are used, and assigns
each value a unique number. For a column with colors, the
dictionary would, for instance, contain a list of the value pairs
(Black, 1); (Red, 2); (Green, 3); (Mauve, 4); etc. This dictionary is
stored as a separate entity, related to but not part of the storage
area used for the table data.

The actual table data is then stored by replacing the colors with
their respective numbers. So a row for a Black T-Ford would not
store the color as “black”, but as “1”.

The actual implementation of dictionaries in SQL Server’s
columnstore indexes is a bit more complex than this. For every
column that uses a dictionary, a single “Global Dictionary” is used
by all segments. But individual segments may also use one extra
dictionary, the “Local Dictionary”. These local dictionaries can be
shared by multiple segments – see figure 2-6 for an illustration.

All four segments use the global dictionary, and there are two
local dictionaries. One of those local dictionaries is shared
between segments 1 and 4, the other is exclusive to segment 3;
segment 2 uses the global dictionary only.

Note that in SQL Server 2012, different terminology was used:
“Primary” and “Secondary” dictionaries rather than “Global” and
“Local”. I will stick to the new terminology, except when
discussing issues related to SQL Server 2012 only.

Zoom in | Open in new window

Figure 2-6: Global and local dictionaries

Though the reasons for this architecture are not documented,
they are not hard to guess. With the size of tables where
columnstore indexes are recommended, a single dictionary for
the entire column would quickly grow to unmanageable sizes. But
completely separate dictionaries for every segment would include
a lot of overhead – if the data in the column “color” is stored in
2000 segments, you do not want 2000 different dictionaries all
defining values for the colors black, red, green, and blue.

The more complex architecture with one global dictionary and
multiple local dictionaries allows SQL Server to store values that
are used in all segments just once for all the segments, and store
values used in a specific segment only in its reserved secondary
dictionary without cluttering the dictionary for the other segments,
without exceeding the size limit of 16 MB for the global dictionary
and another 16 MB for each local dictionary.

Conclusion
The architecture of a columnstore index allows far better
compression than the traditional indexes, because data that is
stored together is from a single column and hence tends to be
more similar. That saves on storage size, and by extension also
on I/O needed for executing a query, which translates into better
performance.

Additionally, more I/O is saved because only data is read for
columns that are used in the query, and segment elimination
provides a third mechanism of I/O reduction.

This article is part of the Stairway to Columnstore Indexes
Stairway

javascript:;
javascript:;
http://www.sqlservercentral.com/stairway/121631/

