
Thank this author by sharing: 0

2008/10/24
FORUM

2014/08/28

ARTICLE

2008/10/07
FORUM

2017/06/23

ARTICLE

2017/06/23

ARTICLE

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Keep up to date -
daily newsletter:

your@email.com

Sign up

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Index Internal Structure in
SQL Server: Stairway to
SQL Server Indexes Level
10
By David Durant, 2012/01/20

The Series
This article is part of the Stairway Series: Stairway to SQL Server
Indexes

Indexes are fundamental to database design, and tell the
developer using the database a great deal about the intentions of
the designer. Unfortunately indexes are too often added as an
afterthought when performance issues appear. Here at last is a
simple series of articles that should bring any database
professional rapidly 'up to speed' with them

In previous levels we have taken a logical approach to indexes,
focusing on what they can do for us. Now it is time to take a
physical approach and examine the internal structure of indexes;
for an understanding of index internals leads to an understanding
of index overhead. Only by knowing index structure, and how it is
maintained, can you understand, and minimize, the cost of index
creation, alteration, and removal; and of row insertion, update,
and deletion.

Therefore, beginning with this level, we expand our focus to
include the costs of indexes, as well as the benefits of indexes.
After all, minimizing the costs is part of maximizing the benefits;
and maximizing the benefits of your indexes is what this Stairway
is all about.

Leaf and Non-leaf Levels
The structure of any index consists of the leaf leveland the non-
leaf levels. Although we never explicitly said so, all previous
Levels focused on the leaf level of an index. Thus, it is the leaf
level of a clustered index that is the table itself; each leaf level
entry being a row of the table. For a nonclustered index, it is the
leaf level that contains one entry per row (except for filtered
indexes); each entry consisting of the index key columns, optional
included columns, and the bookmark, which is either the
clustered index key columns or a RID (Row ID) value.

An index entry is also called an index row; regardless of whether
it is a table row (clustered index leaf level entry), refers to a table

Related Articles

index entry

index entry

Clustered Columnstore Index
Gives "Unable to find index
entry" Error

The Clustered columnstore index
generates "unable to find index entry"
error and a memory dump after...

Isolation level and Index

Does indexes affect isolation level

Indexes with Included Columns:
Stairway to SQL Server Indexes
Level 5

Included columns enable nonclustered
indexes to become covering indexes for a
variety of queries, im...

Bookmarks in SQL Server
Indexes: Stairway to SQL Server
Indexes Level 6

A nonclustered index entry consists of
search key columns, included columns,
and the bookmark. The b...

Tags
indexing
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Stay up to date:

Daily newsletters with brand new
articles, scripts, editorials and a
Question of the Day help you keep
on top of SQL Server.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=362446&zid=15220&t=1522616255&auth=913020c5aa94fef38502bbcb62811670
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f72442%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=355676&zid=15491&t=1522616256&auth=afc8cbe3ea473f661f4f042b67494d18
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1085227.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/David_Durant/1380518/
http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Forums/FindPost590412.aspx
http://www.sqlservercentral.com/articles/113752/
http://www.sqlservercentral.com/Forums/FindPost581140.aspx
http://www.sqlservercentral.com/articles/72276/
http://www.sqlservercentral.com/articles/72281/
http://www.sqlservercentral.com/articles/Indexing/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

row (nonclustered index leaf level), or points to a page at a lower
level (non-leaf levels).

The non-leaf levels are a structure built on top of the leaf level,
which enable SQL Server to:

Maintain the index’s entries in index key sequence.
Quickly find a leaf level row given the index key value.

In Level 1, we used the phone book as an analogy to help explain
the benefits of an index. Our phone book user, who was looking
for “Meyer, Helen”, knew that entry would be near the middle of
any sorted list of last names, and jumped directly to the middle of
the white pages to begin the search. SQL Server, however, has
no such intrinsic knowledge of English language last names, or of
any other data. Nor would it know which page was the “middle”
page, unless it walked the entire index from beginning to end. So
SQL Server builds some additional structure into the index.

Non-leaf Levels
This additional structure is called the non-leaf levels, or node
levels, of the index; and is thought of as being built on top of the
leaf level, regardless of where its pages are physically located.
Its purpose is to give SQL Server a single page entry point for
every index, and a short traversal from that page to the page
containing any given search key value.

Each page in an index, regardless of its level, contains index
rows, or entries. In the leaf level pages, as we have repeatedly
seen, each entry either points to a table row or is the table row.
So if the table contained one billion rows, the index’s leaf level
would contain one billion entries.

In the level just above the leaf level, that is, the lowest non-leaf
level; each entry points to one leaf level page. If our one billion
entry index averaged 100 entries per page, which is a realistic
number for an index whose search key consists of a few numeric,
date, and code columns; then the leaf level would contain
1,000,000,000 / 100 = 10,000,000 pages. In turn, the lowest non-
leaf level would contain 10,000,000 entries, each pointing to a
leaf level page, and would span 100,000 pages.

Each higher non-leaf level has pages whose entries each point to
a page at the next lower level. Thus, our next higher non-leaf
level would contain 100,000 entries and be 1,000 pages in size.
The level above that would contain 1,000 entries and be 10
pages in size; the one above that would consist of ten entries
residing on just one page; and that is where it stops.

The lone page sitting at the top of the index is called the root
page. The levels of an index that lie below the root page level
and above the leaf level are referred to as the intermediate
levels. The numbering of the levels starts at zero and works
upward from the leaf level. Thus, the lowest intermediate level is
always level 1.

Non-leaf level entries contain only index key columns and the
pointer to a lower level page. Included columns only exist in the
leaf level entries; they are not carried in the non-leaf level entries.

Each page in an index, except the root page, contains two
additional pointers. These pointers point to the next page and the
previous page, in index sequence, at the same level. The
resulting bi-directional chain of pages enables SQL Server to
scan the pages of any level in either ascending or descending
sequence.

A Simple Example
The simple diagram, shown in Figure 1 below, helps illustrate this
tree like structure of an index. This diagram represents an index
created on the LastName / FirstName columns of a theoretical
Personnel.Employee table, using the following SQL:

CREATE NONCLUSTERED INDEX IX_Full_Name

ON Personnel.Employee

(

LastName,

FirstName,

)

GO

Diagram Notes:

A pointer to a page consists of the database file number plus the
page number. Thus a pointer value of 5:4567 points to the
4567th page of database file #5.

Most of the sample values have been taken from the
Person.Contact table in the AdventureWorksdatabase. A few
others have been added for illustrative purposes.

Karl Olsen is the most popular name in the sample. There are so
many Karl Olsens that their entries span an entire intermediate
level index page.

Zoom in | Open in new window

Figure 1 – A Vertical Slice of an Index

For the sake of clarity and illustration, the diagram differs from a
typical index in the following ways:

The number of entries per page in a typical index would be
greater than the number shown in the diagram, and, thus, the
number of pages for every level except the root would be greater
than is shown. The leaf level, especially, would have far more
pages than can be shown in our space limited diagram.

The entries of an actual index are not sequenced on the page. It
is the page’s entry offset pointers that provide sequenced access

javascript:;
javascript:;

to the entries. (See Level 4 – Pages and Extents for more
information regarding offset pointers.)

There can be, and often is, more correlation between the physical
and logical sequence of an index than is shown in the diagram.
This lack of correlation between the physical and logical
sequence of an index is called external fragmentation, and is
discussed in Level 11 – Fragmentation.

As mentioned earlier, an index can have more than one
intermediate level.

It is as if our white pages user, looking for Helen Meyer, opened
the phone book and discovered that the first page, and only the
first page, was pink. Within the pink page’s list of sequenced
entries was one that said “For names between “Fernandez,
Zelda” and “Olsen, Karl” see blue page 5:431”. When our user
went to blue page 5:431, one of the entries on that page said “For
names between “Kumar, Kevin” and “Nara, Alison” see white
page 5:2006”. The pink page would correspond to the root, the
blue pages to the intermediate level, and the white pages are the
leaf.

Index Depth
The location of the root page is stored in a system table along
with other information about the index. Whenever SQL Server
needs to access the index entry that matches an index key value,
it starts at the root page and works its way through one page at
each level in the index until it reaches the leaf level page that
contains the entry for that index key. In our one billion row table
example, five page reads would take SQL Server from the root
page to the leaf level page and its desired entry; in our
diagramed example, three reads would suffice. In a clustered
index, this leaf level entry would be the actual data row; in a
nonclustered index, this entry would contain either the clustered
index key columns or a RID value.

The number of levels, or depth, of an index will depend upon the
size of the index key and the number of entries. In the
AdventureWorks database, no index has a depth greater than
three. In databases with very large tables or very wide index key
columns, depths of six or greater may occur.

The sys.dm_db_index_physical_statsfunction provides
information on your indexes, including index type, depth, and
size. It is a table-valued function which can be queried. The
example shown in Listing 1 returns summary information for all
indexes of the SalesOrderDetailtable.

SELECT OBJECT_NAME(P.OBJECT_ID) AS 'Table'

 , I.name AS 'Index'

 , P.index_id AS 'IndexID'

 , P.index_type_desc

 , P.index_depth

 , P.page_count

 FROM sys.dm_db_index_physical_stats (DB_ID

 OBJEC

 NULL

 JOIN sys.indexes I ON I.OBJECT_ID = P.OBJE

 AND I.index_id = P.index

 Listing 1: Querying the sys.dm_db_index_physical_stats
functionThe results shown in Figure 2.

Zoom in | Open in new window

Figure 2: The results of querying the
sys.dm_db_index_physical_stats function

Conversely, the code shown in Listing 2 requests detailed
information for a specific index, the nonclustered index on the
table’s uniqueidentifier column of the SalesOrderDetail table. It
returns one row per index level, as shown in Figure 3.

Listing 2: Querying sys.dm_db_index_physical_stats for
detailed information.

 Figure 3: The results of querying
sys.dm_db_index_physical_stats for detailed information

Zoom in | Open in new window

From the results shown in Figure 3, we can see that:

The leaf level of this index is spread over 407 pages.
The one and only intermediate level requires just two pages.
The root level is, as always, a single page.

The size of the non-leaf portion of an index is typically one tenth
to one two-hundredth the size of the leaf level; depending upon
which columns comprise the search key, the size of the
bookmark, and which, if any, included columns are specified. In
other words, indexes are, relatively speaking, very wide and very
short. This is different from most sample diagrams of indexes,
such as the one in Figure 1, which tend to be tall and narrow.

Remember, included columns are only applicable to nonclustered
indexes and they only appear in the leaf level entries; they are
omitted from the higher level entries, which is why they do not
add to the size of the non-leaf levels.

Because the leaf level of a clustered index is the data rows of the
table, only the non-leaf portion of a clustered index is additional
information, requiring additional storage. The data rows would
exist whether the index were created or not. Thus, creating a
clustered index may take time and consume resources; but when

SELECT OBJECT_NAME(P.OBJECT_ID) AS 'Table'

 , I.name AS 'Index'

 , P.index_id AS 'IndexID'

 , P.index_type_desc

 , P.index_level

 , P.page_count

 FROM sys.dm_db_index_physical_stats (DB_ID

 JOIN sys.indexes I ON I.OBJECT_ID = P.OBJE

 AND I.index_id = P.index

javascript:;
javascript:;
javascript:;
javascript:;

Thank this author by sharing: 0

the creation is finished, very little extra space is consumed in the
database.

Conclusion
The structure of index enables SQL Server to quickly access any
entry for a specific index key value. Once that entry has been
found, SQL Server can:

Access the row for that entry.
Traverse the index from that point in either ascending or
descending sequence.

This indexing tree structure has been in use for a long time,
longer even than relational databases, and it has proven itself
over time.

This article is part of the Stairway to SQL Server Indexes
Stairway

Sign up to our RSS feed and get notified as soon as we publish a
new level in the Stairway!

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Total article views: 13506 | Views in the last 30 days: 7

http://www.sqlservercentral.com/stairway/72399/
http://www.sqlservercentral.com/Xml/Rss/stairways
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1085227.aspx
javascript:;

