
Thank this author by sharing: 0

2014/07/20

BLOG

2015/07/11
BLOG

2017/08/30

BLOG

2018/02/05

ARTICLE

2014/07/24

BLOG

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Improve your SQL Server knowledge daily with more
articles by email.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Stairway to ColumnStore
Indexes Level 7:
Optimizing Nonclustered
Columnstore Indexes
By Hugo Kornelis, 2016/03/16

The Series
This article is part of the Stairway Series: Stairway to
Columnstore Indexes

SQL Server 2012 and later offer a very different type of index
from the traditional b-tree, the in-memory columnstore index.
These indexes use a column-based storage model, as well as a
new 'batch mode' of query execution and can offer huge
performance increases for certain workloads. But how are they
built, how do they work, and why do they manage to have such a
dramatic impact on performance? In this stairway, Hugo Kornelis
explains all, with his usual mix of concise description and detailed
demonstration.

So far in this series, we have just been creating and using
columnstore indexes without giving any consideration to
optimizing these indexes. We just trusted that they would work
and give us a huge performance benefit. And they did. As with
many features in SQL Server, Microsoft has implemented the
columnstore index feature in such a way that they will work just
fine even if you don't spend any effort on optimizing them.

However, again as with many other features, optimizing the
columnstore index right from the start may well gain you even
more performance benefits. And lack of proper maintenance to
keep the columnstore indexes healthy will probably cause their
benefit to deteriorate over time. So in the next levels, we will start
to look at what you can do to optimize your columnstore indexes.

In this level, we will focus on optimization techniques to apply
while building the nonclustered columnstore index, which is
available in all versions of SQL Server from 2012 up. The next
level will then show how to apply the same technique to the
clustered columnstore index that was introduced in SQL Server
2014, as well as how to do the additional maintenance that is
needed for these indexes when data in the table changes over
time.

Building a more efficient columnstore
index

Related Articles

Clustered Columnstore Indexes
– part 34 (“Deleted Segments
Elimination”)

Continuation from the previous 33 parts,
starting from
http://www.nikoport.com/2013/07/05/clustered-

COLUMNSTORE INDEX… DEMO

COLUMNSTORE INDEX How data is
stored in traditional way For physical
storage of a table, its rows...

Columnstore Indexes – part 111
(“Row Group Elimination – Pain
Points”)

Continuation from the previous 110 parts,
the whole series can be found at
http://www.nikoport.com/c...

Stairway to Columnstore
Indexes Level 3: Building The
Columnstore

The performance increase columnstore
indexes grant when reading data from the
index is offset by the...

Clustered Columnstore Indexes
– part 35 (“Trace Flags & Query
Optimiser Rules”)

Continuation from the previous 34 parts,
starting from
http://www.nikoport.com/2014/07/20/clustered-

Tags
columnstore index
nonclustered index
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Stay up to date:

Daily newsletters with brand new
articles, scripts, editorials and a
Question of the Day help you keep
on top of SQL Server.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=355875&zid=15220&t=1522616878&auth=e59000e90daaaf15042604fd06be794c
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f138566%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=362444&zid=15491&t=1522616878&auth=f1a2e05bc1d3d7b1cc4ca3d2e27ce99e
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1766333.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/Hugo_Kornelis/264757/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/blogs/nikos-blog/2014/07/20/clustered-columnstore-indexes-part-34-deleted-segments-elimination/
http://www.sqlservercentral.com/blogs/sqlserversdba/2015/07/11/columnstore-index-demo/
http://www.sqlservercentral.com/blogs/nikos-blog/2017/08/30/columnstore-indexes-part-111-row-group-elimination-pain-points/
http://www.sqlservercentral.com/articles/126202/
http://www.sqlservercentral.com/blogs/nikos-blog/2014/07/24/clustered-columnstore-indexes-part-35-trace-flags-query-optimiser-rules/
http://www.sqlservercentral.com/articles/ColumnStore+Index/
http://www.sqlservercentral.com/articles/NonClustered+Index/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

In level 2 of this series, I explained the main reasons why
columnstore indexes can be so much faster than rowstore
indexes: less I/O is needed because column elimination can be
applied, rowgroup elimination is sometimes possible, and the
data that still has to be read is compressed better. Additionally,
batch mode can allow much faster processing. We can try to
influence each of these factors, but they require different
techniques at different times.

There is no good way to improve the compression effectiveness
when building the columnstore index. You might try to ensure that
SQL Server processes data in a sequence that is beneficial for
compression, but my experiments so far have shown little to no
effect. This is because SQL Server always reorders the rows in a
rowgroup before starting compression, so whatever ordering I
apply before the build process starts is lost. In the next level I will
show an option that was introduced in SQL Server 2014 that
does give us some control over the compression effectiveness,
but this cannot be used while building the index.

There is one way to maximize the benefit of column elimination,
and this method is obvious: ensure that all your queries that
target a table with a columnstore index on it use only the columns
you really need. So you should remove all columns you don't
really need from your query, and you definitely should avoid using
SELECT * at the outermost level. If you have a fact table that

has the same data in different formats (e.g. two columns for
status code and status description), then don't mix the two in a
single query – or better yet, move the description out to its own
dimension table. But none of those techniques are new; all of
these are relevant for optimizing the performance of rowstore
indexes as well, so you probably already apply them.

The last two techniques, rowgroup elimination and batch mode
execution, give us the most opportunity for optimization.
Optimizing batch mode may require rewriting queries; this will be
covered in later levels. Optimizing for rowgroup elimination is the
focus of the rest of this level.

Preordering the data
As mentioned before, forcing the data to be arranged in a specific
order when building the columnstore index will not help for
compression, because the data will be reordered as part of the
index build process. But that reordering is done after dividing the
data up into rowgroups, and that means that we can still use this
to increase the effect of rowgroup elimination.

When SQL Server builds a columnstore index, it respects the
partitioning scheme. Any rowgroup will only have rows from a
single partition. Within each partition (or within the entire table if
partitioning is not used), rows are assigned to rowgroups in the
order in which they are read. If the table is a heap, then this is the
order in which they happen to be allocated on disk – which is for
all practical purposes beyond our control. However, if the table
has a clustered index, then the rows will be read from that index,
so the rows that are logically “first” in the index will all be in the
“first” segments, and the rows that are logically “last” will be in the
“last” segments.

Let's first examine the nonclustered columnstore index I created
back in level 3 on the FactOnlineSales table. This table already
had a clustered index on the OnlineSalesKey column when we
built the columnstore index. Let's verify the minimum and
maximum values in each rowgroup for a few columns, using a

http://www.sqlservercentral.com/articles/Stairway+Series/124326/
http://www.sqlservercentral.com/articles/Stairway+Series/126202/

variation on one of the queries from level 4. (Note that I selected
just a few columns, and only those with an integer data type. For
other data types, the relationship between the min_data_id and
max_data_id columns and the actual minimum and maximum
values is not documented, and beyond the scope of this
stairway).

Listing 7-1: Reviewing some metadata for rowgroup
elimination

The results of this query on my system are shown below. The
results on your system may be different, depending on
processors and memory available when the columnstore index
was built, but they should still expose a similar pattern.

Zoom in | Open in new window

Figure 7-1: Rowgroup elimination data

USE ContosoRetailDW;

GO

SELECT p.partition_number,

 s.segment_id,

 MAX(s.row_count) AS row_count,

 MAX(CASE WHEN c.name = N'OnlineSa

 THEN s.min_data_id END)

 MAX(CASE WHEN c.name = N'OnlineSa

 THEN s.max_data_id END)

 MAX(CASE WHEN c.name = N'StoreKey

 THEN s.min_data_id END)

 MAX(CASE WHEN c.name = N'StoreKey

 THEN s.max_data_id END)

 MAX(CASE WHEN c.name = N'ProductK

 THEN s.min_data_id END)

 MAX(CASE WHEN c.name = N'ProductK

 THEN s.max_data_id END)

FROM sys.column_store_segments

INNER JOIN sys.partitions

 ON p.hobt_id

INNER JOIN sys.indexes

 ON i.object_id

 AND i.index_id

LEFT JOIN sys.index_columns

 ON ic.object_id

 AND ic.index_id

 AND ic.index_column_id

LEFT JOIN sys.columns

 ON c.object_id

 AND c.column_id

WHERE i.name

AND c.name IN (N'OnlineSalesKey', N'S

GROUP BY p.partition_number,

 s.segment_id;

http://www.sqlservercentral.com/articles/Stairway+Series/128989/
javascript:;
javascript:;

If you look at the data for the OnlineSalesKey column above, you
will see that the first four rowgroups roughly hold the data for
values between 19.5 million and 24 million; the next four
rowgroups have data from 23.5 million to 28 million, and all
values above 28 million are in the last six rowgroups. If a query
has a filter on this column, rowgroup elimination will reduce the
number of rowgroups to scan to at most six, and usually just four.

But if you look at the other columns, you will see that filtering on
them will not result in any significant reduction – all rowgroups
contain the full range of possible StoreKey values, and only the
two small rowgroups at the end can be eliminated based on
ProductKey.

In a typical datawarehouse or reporting database, I would not
expect to see a lot of queries that filter on the OnlineSalesKey. If
you want to get more rowgroup elimination on this table, you first
have to investigate which columns are most often used as a filter
condition in the queries that you want to speed up. Sometimes a
single column stands out; sometimes you will have to make a
judgement call between several contenders. Unfortunately, you
will have to pick a single column that you can optimize for, it is not
possible to pick several.

A note on correlated columns

A lot of fact tables have columns with correlated data. The
most obvious example is a table for order data, with columns
for order date, shipment date, and payment due date. The
shipment date and payment due date will never be before
the order date, and for most businesses they will hardly ever
be more than a month after the order date. In such cases, a
“free” side effect of this correlation is that when you optimize
for rowgroup elimination on one of these columns, the
rowgroup elimination benefit on the correlated columns will
also improve. You will most likely not get as much benefit for
these related columns because the correlation will probably
not be 100%, but it can still help.

Since a lot of datawarehouse queries on order tables
actually do filter on the various dates in those tables,
optimizing for rowgroup elimination on the order table is in
fact a very common strategy, which also nicely coincides with
the partition switching strategies for working around the read-
only limitation of nonclustered columnstore indexes.

Once you have decided for which column you want to optimize
the columnstore index, you can drop the existing columnstore
index, change the table to be clustered on the selected column,
and then recreate the columnstore index. (Note that changing the
choice of clustered index will also impact the performance of
queries that use the rowstore indexes on the same table, so you
will have to take that into account as well!). For example, the
code below will replace the existing nonclustered columnstore
index on this table with a new one that is optimized for rowgroup
elimination based on the ProductKey column. (Note that this
script takes some time, because it has to create a new clustered
index, create a nonclustered index, and then recreate the
columnstore index for a 12.6 million row table. On my laptop,
these operations took a total of 4:30 minutes).

USE ContosoRetailDW;

GO

-- First drop the existing nonclustered colu

Listing 7-2: Optimizing rowgroup elimination for a specific
column

Once the code from listing 7-2 has finished, you can rerun the
query in listing 7-1 to see how the selected columns will now fare
in rowgroup elimination. The results on my system are shown in
figure 7-2 below.

Zoom in | Open in new window

Figure 7-2: Optimized rowgroup elimination data

As you can see, the ProductKey values now have a much better
distribution, allowing for a lot of rowgroups to be eliminated if a
query filters on that column. However, almost every rowgroup
(except the small ones for the leftover rows) now spans almost
the entire range of OnlineSalesKey, so any queries that filter on
this column will now be slower. That is why it is so important to
optimize for rowgroup elimination on the column that is most
often used as a filter in the queries that are the most important to
optimize – because whatever choice you make, you will always
pay a price for it.

DROP INDEX NCI_FactOnlineSales ON dbo.FactOn

GO

-- If the table has a lot of nonclustered ro

-- Recreate them at the end of the script if

-- Dropping and recreating is faster than ke

-- Clustered index is tied to primary key, s

ALTER TABLE dbo.FactOnlineSales

DROP CONSTRAINT PK_FactOnlineSales_SalesKey;

-- Now create a clustered index on the desir

CREATE CLUSTERED INDEX ix_FactOnlineSales_Pr

ON dbo.FactOnlineSales(ProductKey);

-- Recreate the PRIMARY KEY constraint, now

ALTER TABLE dbo.FactOnlineSales

ADD CONSTRAINT PK_FactOnlineSales_SalesKey

 PRIMARY KEY (OnlineSalesKey);

-- If the table has a lot of nonclustered ro

-- Do not forget to script the indexes (if n

-- Finally, recreate the nonclustered column

CREATE NONCLUSTERED COLUMNSTORE INDEX NCI_Fa

ON dbo.FactOnlineSales

 (OnlineSalesKey, DateKey, StoreKey, Produ

 CustomerKey, SalesOrderNumber, SalesOrde

 ReturnQuantity, ReturnAmount, DiscountQu

 UnitCost, UnitPrice, ETLLoadID, LoadDate

GO

javascript:;
javascript:;

Maximizing the benefit of preordering
In level 3 of this stairway, I explained that limiting the degree of
parallelism can help to reduce the memory required to build the
columnstore index, at the expense of a longer duration for the
process. But that is not the only effect. A lower degree of
parallelism will also usually reduce the number of small
rowgroups for the leftover rows at the end of the build process for
a partition, and you can get an ever better optimization for
rowgroup elimination by using fewer cores when creating the
index.

As you can see in figure 7-2, there are four rowgroups that all
have data for ProductKey values up to approximately 1000; four
rowgroups for ProductKey values between 1000 and 1800, and
seven for the values above 1800. This is because a single scan
over the entire table, in order of the clustered index on
ProductKey, was feeding four threads at the same time when the
index was being built. A query that filters on a single ProductKey
value will usually still have to scan between four and seven
rowgroups. A lot of rowgroups can be eliminated, but we can
optimize this even further by building the index on a single
thread.

The code in listing 7-3 once again drops the columnstore index
and then recreates it using a MAXDOP hint that limits the process

to a single processor.

Listing 7-3: Rebuilding the columnstore index without
parallelism

Figure 7-3 below shows the results on my system of rerunning
the code from listing 7-1 after rebuilding the nonclustered
columnstore index on a single thread. As you can see, SQL
Server now never has to scan more than at most two rowgroups
when a query filters on a single ProductKey value.

Zoom in | Open in new window

Figure 7-3: Fully optimized rowgroup elimination data

USE ContosoRetailDW;

GO

-- First drop the existing nonclustered colu

DROP INDEX NCI_FactOnlineSales ON dbo.FactOn

GO

-- Then recreate the nonclustered columnstor

CREATE NONCLUSTERED COLUMNSTORE INDEX NCI_Fa

ON dbo.FactOnlineSales

 (OnlineSalesKey, DateKey, StoreKey, Produ

 CustomerKey, SalesOrderNumber, SalesOrde

 ReturnQuantity, ReturnAmount, DiscountQu

 UnitCost, UnitPrice, ETLLoadID, LoadDate

WITH (MAXDOP = 1);

GO

javascript:;
javascript:;

Thank this author by sharing: 0

If your maintenance window is long enough, this is the best
possible scenario for rowgroup elimination if ProductKey is the
column used as a filter in most of your time-critical queries. An
additional benefit is that there are now fewer “small” rowgroups:
all leftover rows are stored in a single rowgroup.

Conclusion
In this level we showed how building a carefully chosen clustered
index before building a nonclustered columnstore index can
result in rowgroups that can benefit far more from rowgroup
elimination. It will take more time to build the index that way, and
it is important to remember that the table becomes read-only after
building the nonclustered columnstore index, so it is not possible
to change the clustered index again after building the
columnstore index. This can be relevant if you also have
workloads that use the rowstore indexes, as they might lose
performance due to the changed clustered index. In such a case
you may end up having to make a trade off.

The same preordering mechanism can be applied to clustered
columnstore indexes as well, but the syntax required is slightly
different. This, along with the additional tasks needed to keep the
clustered columnstore index in good shape as data changes, will
be covered in the next level.

This article is part of the Stairway to Columnstore Indexes
Stairway

Sign up to our RSS feed and get notified as soon as we publish a
new level in the Stairway!

Keep up to date with SQL Server - new articles every
day.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Total article views: 2088 | Views in the last 30 days: 15

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/Xml/Rss/stairways
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1766333.aspx
javascript:;

