
Thank this author by sharing: 0

2007/10/02
ARTICLE

2018/02/22
FORUM

2013/12/04
FORUM

2009/03/04
FORUM

2008/12/12

FORUM

 Log in :: Register :: Not logged in Search Go

Home
Tags
Articles
Editorials
Stairways
Forums
Scripts
Videos
Blogs
QotD
Books
Ask SSC
SQL Jobs
Authors
About us
Contact us
Newsletters
Write for us

Daily SQL Articles
by email:

your@email.com

Sign up

Want more great articles like this? Sign up for fresh SQL
Server knowledge delivered daily.

your@email.com Sign up

 Rate this Join the discussion Add to briefcase

Stairway to Columnstore
Indexes Level 11:
Optimizing Queries For
Batch Mode (Part 2)
By Hugo Kornelis, 2017/01/04

The Series
This article is part of the Stairway Series: Stairway to
Columnstore Indexes

SQL Server 2012 and later offer a very different type of index
from the traditional b-tree, the in-memory columnstore index.
These indexes use a column-based storage model, as well as a
new 'batch mode' of query execution and can offer huge
performance increases for certain workloads. But how are they
built, how do they work, and why do they manage to have such a
dramatic impact on performance? In this stairway, Hugo Kornelis
explains all, with his usual mix of concise description and detailed
demonstration.

We started our exploration of query constructions that inhibit
batch mode execution in Level 10 of this series (which you can
read here:
http://www.sqlservercentral.com/articles/Stairway+Series/148676)
with two examples that affect SQL Server 2012 only: outer joins
and UNION ALL.

In this level we will look at many other similar issues and their
workaround. Some of them affect SQL Server 2012 only, others
affect SQL Server 2014 as well – I will point out the affected
versions in each case. Note that for all the rewrites presented in
this level, just as with those from the last level, you should only
use them if you understand why they are guaranteed to never
change the results, after proper testing, and with sufficient
comments in the code to ensure that anyone looking at the code
in the future will understand what’s going on.

The sample database

All sample code in this level uses Microsoft’s
ContosoRetailDW sample database and builds upon the
code samples from the previous levels. If you didn’t follow
this stairway from the start, or if you did other tests in that
database and are now concerned that this might impact the
code in this level, you can easily rebuild the sample
database. First, download the Contoso BI Demo Database
from https://www.microsoft.com/en-
us/download/details.aspx?id=18279, choosing the
ContosoBIdemoBAK.exe option that contains a backup file.

Related Articles

Aggregate Queries

They are a basic type of query that every
DBA and developer should be able to
write, but aggregates ...

Aggregation

Confused about aggregation

select query

select query

Aggregate Function / Group By

Column 'UPR00100.FRSTNAME' is
invalid in the select list because it is not
contained in either an ag...

Urgent: Need help with Query on
Group By Part

excluding 2 col. from group by aggregate

Tags
columnstore index
stairway series

 Copyright © 2002-2018 Redgate. All Rights Reserved. Privacy Policy. Terms of Use. Report Abuse.

Stay up to date:

Daily newsletters with brand new
articles, scripts, editorials and a
Question of the Day help you keep
on top of SQL Server.

your@email.com

Sign up

No thanks

http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/
http://g.adspeed.net/ad.php?do=clk&aid=328527&zid=15220&t=1522616984&auth=ad2995e9d1e69c64d32131def109eac6
http://www.red-gate.com/about/welcomesscvisitors.htm?utm_source=ssc&utm_medium=textad&utm_campaign=ssclandingpage
http://www.sqlservercentral.com/Login?ReturnURL=%2farticles%2fStairway%2bSeries%2f150759%2f
http://www.sqlservercentral.com/Register
http://www.sqlservercentral.com/
http://www.sqlservercentral.com/Tags
http://www.sqlservercentral.com/Articles/
http://www.sqlservercentral.com/Articles/Editorial
http://www.sqlservercentral.com/stairway/
http://www.sqlservercentral.com/Forums
http://www.sqlservercentral.com/Scripts/
http://www.sqlservercentral.com/Articles/Video
http://www.sqlservercentral.com/blogs/
http://www.sqlservercentral.com/Questions
http://www.sqlservercentral.com/Books/
http://ask.sqlservercentral.com/
http://jobs.sqlservercentral.com/
http://www.sqlservercentral.com/Authors/Articles/
http://www.sqlservercentral.com/About/AboutUs/
http://www.sqlservercentral.com/About/ContactUs/
http://www.sqlservercentral.com/NewsletterArchive
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/Contributions/Home
http://g.adspeed.net/ad.php?do=clk&aid=328526&zid=15491&t=1522616982&auth=404676ef3fae07ad9017e4f11c252bfd
javascript:;
http://www.sqlservercentral.com/Forums/FindPost1847483.aspx
javascript:;
http://www.sqlservercentral.com/Authors/Articles/Hugo_Kornelis/264757/
http://www.sqlservercentral.com/stairway/121631/
http://www.sqlservercentral.com/articles/Stairway+Series/148676
http://www.sqlservercentral.com/articles/2177/
http://www.sqlservercentral.com/Forums/FindPost852375.aspx
http://www.sqlservercentral.com/Forums/FindPost855592.aspx
http://www.sqlservercentral.com/Forums/FindPost667707.aspx
http://www.sqlservercentral.com/Forums/FindPost617185.aspx
http://www.sqlservercentral.com/articles/ColumnStore+Index/
http://www.sqlservercentral.com/articles/Stairway+Series/
http://www.sqlservercentral.com/Contributions/Home
http://www.sqlservercentral.com/About/Privacy/
http://www.sqlservercentral.com/About/Terms
mailto:abuse@sqlservercentral.com

After that, download the scripts attached to this article and
execute the one appropriate for your system (either SQL
Server 2012 or SQL Server 2014. If you are running SQL
Server 2016, I suggest using the 2014 version of this script;
keep in mind however that there have been significant
changes in this version so many of the demo scripts in this
stairway series will not work the same on SQL Server 2016.
We will cover the changes in SQL Server 2016 in a later
level). Do not forget to change the RESTORE DATABASE
statement at the start: set the correct location of the
downloaded backup file, and set the location of the database
files to locations that are appropriate for your system.

Once the script has finished, you will have a
ContosoRetailDW database in exactly the same state as
when you had executed all scripts from all previous levels.
(Except for small variations in the index creation process that
are impossible to avoid).

IN and EXISTS
If a query filter allows multiple values, then those values can be
stored in another table. For instance, the values could be
available in a table-valued parameter that was passed into the
stored procedure, or they could be inserted into a temporary table
that was filled by splitting a comma-separated list in a
varchar(max) parameter. The actual query then uses either an

IN predicate or the equivalent EXISTS predicate to filter on the

requested values. When using this method to filter a table with a
columnstore index, this introduces two problems: the filter cannot
be used for rowgroup elimination so that the entire table is read,
and in many cases the query execution will also fall back into row
mode. Both these problems apply to SQL Server 2012 only.

For this problem, there is a very easy workaround. Instead of
writing this query with an IN predicate or an EXISTS predicate,

we could write it using a JOIN. The JOIN query returns the same
results as long as you can be sure that there are no duplicates in
the table that holds the values to be selected. But with the join,
you will always get both rowgroup elimination and batch mode
execution.

USE ContosoRetailDW;

GO

-- Temporary table for promotion selection

CREATE TABLE #Selection

 (PromotionKey int NOT NULL);

INSERT INTO #Selection (PromotionKey)

VALUES (2), (40), (5), (22), (18), (5);

SET STATISTICS TIME ON;

-- Standard query using IN - row mode and no

SELECT dp.ProductName,

 dd.CalendarQuarter,

 SUM(fos.SalesQuantity) AS Quantit

FROM dbo.FactOnlineSales AS fos

INNER JOIN dbo.DimDate AS dd

 ON dd.Datekey = fos.Dat

INNER JOIN dbo.DimProduct AS dp

Listing 11-1: Replacing IN (or EXISTS) with a join

The code in listing 11-1 allows you to see the problem with IN

and how one might work around it by using a JOIN. Because
there are duplicates in the #Selection table, I had to put in a CTE
(common table expression) to prevent duplicates in the results. If
you can be sure that there are no duplicates (for instance
because there is a PRIMARY KEY or UNIQUE constraint on the

selection table), then you can join directly to the selection table
without the need for any CTE at all.

Zoom in | Open in new window

Figure 11-1: Using a join is much faster than using IN

The second version of the query is only slightly more complex
than the first, but it performs much better. As you can see above,
the first runs in 1.7 seconds while burning 9.4 seconds of CPU
time on my system; the second version finishes in 0.3 seconds
and uses just 0.3 seconds CPU.

NOT IN and NOT EXISTS
This problem is similar to the one before. The only difference is
that this time the values in the selection table should be excluded
instead of included. This problem is typically handled similarly to
the one before, this time using NOT IN or NOT EXISTS. And

again, that query construction will prevent both predicate
pushdown and batch mode execution on SQL Server 2012.

One way to work around this is to first get a list of all distinct
values that exist in the column you are selecting on, remove the
values in the selection list, then use the remaining values in the
WHERE clause of the query. This changes the query construction

from NOT IN to IN, for which we have already seen the

workaround. However, this requires an extra scan of the fact table

 ON dp.ProductKey = fos.Pro

WHERE fos.PromotionKey IN (SELECT

 FROM

GROUP BY dp.ProductName,

 dd.CalendarQuarter

ORDER BY dp.ProductName,

 dd.CalendarQuarter;

-- Using a join instead returns the same res

WITH DistinctSelection

AS (SELECT DISTINCT PromotionKey

 FROM #Selection)

SELECT dp.ProductName,

 dd.CalendarQuarter,

 SUM(fos.SalesQuantity) AS Quantit

FROM dbo.FactOnlineSales AS fos

INNER JOIN dbo.DimDate AS dd

 ON dd.Datekey = fos.Dat

INNER JOIN dbo.DimProduct AS dp

javascript:;
javascript:;

to find all possible values, and if you are excluding only a few
special customers, then the produced list of customers to include
can become very long. Finally, if the fact table allows NULL

values in the selection column, then this rewrite causes incorrect
results.

There is however an alternative method. This method uses the
same basic idea as the workarounds you saw in the previous
level: find a way to do as much work as possible in batch mode,
then aggregate down as far as possible and accept that the rest
of the work on a much smaller data set will be done in row mode.
The code in listing 11-2 demonstrates both the performance issue
with NOT EXISTS and this rewrite method.

Listing 11-2: Speeding up NOT IN (or NOT EXISTS)

The trick used here is that, instead of filtering individual rows from
the fact table, we now filter entire groups after aggregation. The
original query groups by ProductName and CalendarQuarter; at
that level it is impossible to filter on PromotionKey. That’s why the

USE ContosoRetailDW;

GO

-- Temporary table for promotion selection

CREATE TABLE #Selection

 (PromotionKey int NOT NULL);

INSERT INTO #Selection (PromotionKey)

VALUES (1), (40), (5), (22), (18), (5), (8),

SET STATISTICS TIME ON;

-- Standard query using NOT EXISTS

SELECT dp.ProductName,

 dd.CalendarQuarter,

 SUM(fos.SalesQuantity) AS Quantit

FROM dbo.FactOnlineSales AS fos

INNER JOIN dbo.DimDate AS dd

 ON dd.Datekey = fos.Dat

INNER JOIN dbo.DimProduct AS dp

 ON dp.ProductKey = fos.Pro

WHERE NOT EXISTS

 (SELECT *

 FROM #Selection AS s

 WHERE s.PromotionKey = fos.Pro

GROUP BY dp.ProductName,

 dd.CalendarQuarter

ORDER BY dp.ProductName,

 dd.CalendarQuarter;

-- Using NOT EXISTS after aggregation is muc

WITH AllAggregated

AS (SELECT dp.ProductName,

 dd.CalendarQuarter,

 fos.PromotionKey,

 SUM(fos.SalesQuantity) AS Qua

 FROM dbo.FactOnlineSales AS fos

 INNER JOIN dbo.DimDate AS dd

dd k f

first phase has to add the PromotionKey to the GROUP BY; after

this first stage of aggregation the result is then filtered using NOT

IN, and the remaining data is then further aggregated to produce

the final result. Note that for this is the same local-global
aggregation pattern used in Level 10, so the same guidelines for
handling various aggregates apply.

Obviously, because we force SQL Server to first aggregate all
data before applying the filter, there is no way that rowgroup
elimination can ever be used in this workaround. Also because
we had to add an extra level to the first GROUP BY, the number
of rows left when falling back to row mode is higher than in
previous examples – just under 100,000 in this case. Because of
this, you should not use this rewrite on SQL Server 2014 or
newer, where the original query runs (slightly) faster than the
rewrite. However, on SQL Server 2012 this rewrite does result in
a significant speed increase because it allows the joins for the
12.6 million rows and the local aggregation to all operate in batch
mode; only the filtering and the global aggregation of the
remaining less than 100,000 rows requires row mode execution.

Zoom in | Open in new window

Figure 11-2: Using local-global aggregation makes NOT
EXISTS faster

As shown in figure 11-2, the original query took 2.7 seconds and
used 15.7 seconds CPU time on my system; after the rewrite the
query finished in 1.0 seconds and used 3.2 seconds of CPU.

OR in the WHERE clause
For any type of table and any type of index, a WHERE clause that

uses OR can cause problems. Columnstore indexes are no

exception. In this case, the problem is not related to execution
mode (you will see batch mode if the OR condition is the only

problematic element in your query), but you do lose rowgroup
elimination. When each of the individual filters is very selective,
then this can still affect query performance, and this is a problem
that affects performance on every version of SQL Server.

An alternative approach would be to once more use local-global
aggregation. For example, if you have a query that reports on
products that are red or expensive, then you can instead use two
queries, one for all red products and another for all expensive
products, then combine the results. But that would count some
products twice: items that are both red and expensive are
included in both results. To prevent that, you have to remove
those from one of the two. This is shown in listing 11-3, where
you first see a query with OR, and then the same query rewritten

to use local-global aggregation on two sets: red products and
expensive non-red products. Note the handling of NULL values in

the second part of this query; if a column does not allow NULL

values then this can be removed (making the query even faster).

USE ContosoRetailDW;

GO

javascript:;
javascript:;

Listing 11-3: Avoiding OR in a query

The execution plans shown in figure 11-3 were generated on
SQL Server 2014. The percentages shown (which are always
based on the estimated cost, even in an actual execution plan)
seem to indicate that the rewrite will be almost twice as slow as
the simple original version of the query. (The optimizer also
suggests adding a nonclustered rowstore index to improve
performance. This is a bad suggestion. If you add the suggested
index it is not even used, and when you add a hint to force the
use of this index it reduces performance.)

Zoom in | Open in new window

Figure 11-3: Execution plans for the simple OR and the long
rewrite

SET STATISTICS TIME ON;

-- A simple query using OR

SELECT dp.ProductName,

 dd.CalendarQuarter,

 SUM(fos.SalesQuantity) AS Quantit

FROM dbo.FactOnlineSales AS fos

INNER JOIN dbo.DimDate AS dd

 ON dd.Datekey = fos.Dat

INNER JOIN dbo.DimProduct AS dp

 ON dp.ProductKey = fos.Pro

WHERE dp.ColorName = 'Red'

OR fos.UnitCost > 500

GROUP BY dp.ProductName,

 dd.CalendarQuarter

ORDER BY dp.ProductName,

 dd.CalendarQuarter;

-- A much longer but in this case also faste

WITH RedProducts

AS (SELECT dp.ProductName,

 dd.CalendarQuarter,

 SUM(fos.SalesQuantity) AS Qua

 FROM dbo.FactOnlineSales AS fos

 INNER JOIN dbo.DimDate AS dd

 ON dd.Datekey = fos

 INNER JOIN dbo.DimProduct AS dp

 ON dp.ProductKey = fos

 WHERE dp.ColorName = 'Re

 GROUP BY dp.ProductName,

 dd.CalendarQuarter)

, ExpensiveProducts

AS (SELECT dp.ProductName,

 dd.CalendarQuarter,

SUM(f S l Q tit) AS Q

javascript:;
javascript:;

The estimated query has always been a dangerous and
misleading tuning tool; this is even worse when columnstore
indexes are involved. The estimated cost is based on
assumptions and these assumptions don’t sufficiently take into
account the savings of reading from columnstore indexes and of
executing in batch mode. That is why, instead of looking at the
percentages shown above, I prefer to go by the output generated
by SET STATISTICS IO. As shown in figure 11-4, estimated

costs are indeed completely wrong in this case: the elapsed time
is reduced from 0.75 to just 0.25 seconds, and the CPU time
used is down from over 0.8 seconds to less than 0.2.

Zoom in | Open in new window

Figure 11-4: Actual elapsed and CPU time of the two queries

Rewriting the query improves performance of this particular
query, but that will not always be the case; it depends on
selectivity of the filters and on the data distribution. For other
conditions, the original version of the query using a simple OR

would be faster than the rewrite. You should always test both
variations on realistic test data and only use the rewrite if it
improves performance in your specific case. Also, because data
can change over time, it is important to periodically revisit these
queries to verify if the implemented version is still the best option.

Aggregation without GROUP BY
Probably the most surprising limitation of batch mode execution
in SQL Server 2012 is that it cannot handle aggregates without a
GROUP BY in the query. So when a data analyst runs a few quick

queries to get for instance minimum and maximum value in a
column or number of rows, just to get a first impression of the
data, those queries will run slower than the much more
complicated queries used for actual reports. The reason for that
speed difference is that the reports have GROUP BY in their

queries so that aggregation (and most of the rest of the execution
plan) can be performed in batch mode; the simple query used to
get a first feel for the data has no GROUP BY and hence falls

back to row mode.

It is possible to work around this limitation by using local-global
aggregation: first grouping by any available column for the local
aggregation, and then doing global aggregation without GROUP

BY on those results. But in this specific case there is a far easier

way to work around it: just add a “fake” GROUP BY clause, using

an expression that is redundant because it always returns the
same value, but that the optimizer doesn’t recognize as
redundant. Surprisingly enough, simply subtracting a numeric
column from itself is sufficient for this purpose. (Do make sure to
use a column that doesn’t allow NULL values, otherwise you’ll

end up with two rows in the result set).

USE ContosoRetailDW;

GO

SET STATISTICS TIME ON;

javascript:;
javascript:;

